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ABSTRACT. This study proposes a spreadsheet road network design (SRND) model for 
stochastic user equilibrium (SUE) transportation networks in urban areas. Road Network Design 
(RND) can be described as a numerical solution of the transportation problems which planers and 
traffic engineers face of. The RND also investigates how to manage current network capacity and 
to maintain scarce economic sources. For this purpose, a bi-level programming formulation for 
the RND is presented, in which the upper level model represents RND and a lower level 
represents road users’ response. At the upper level problem, the design parameter is obtained 
using the quasi-Newton method and SUE link flows is obtained using Logit form of route choice 
probabilities at the lower level. The RND model is combined with the MathCAD program in 
order to find the derivatives of the link cost function. Finally, a solution algorithm for the SRND 
is proposed. Results showed that SRND model can be used for solving the RND problem in 
urban areas. It is also easy to apply since the derivatives of the path costs are obtained by 
internally calling the MathCAD program.  
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INTRODUCTION 
 
Road network design (RND) problem can be described as a numerical solution of the 
transportation network problems which planers and traffic engineers face of. It investigates how 
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to manage and to operate current transportation networks with available economic sources. RND 
may be carried out with effectively solving the traffic assignment and traffic control problem. 
Traffic control problem optimizes area traffic control parameters for fixed set of link traffic 
volumes for a short time period while traffic assignment problem obtains the equilibrium traffic 
volumes for fixed set of traffic control parameters for a short time period. The mutual interaction 
of these two problems can be explicitly considered, producing the so-called combined control and 
assignment problem. 
 
A large number of network design problem (NDP) formulations have been proposed in the 
literature over the last decades, mostly based on nonlinear mathematical programming 
formulations. All existing NDP approaches assume that static traffic flow patterns on the 
improved network prevail. An extensive review of the NDP literature can be found in Yang and 
Bell (1998). 
 
LeBlanc (1975) proposed a branch and bound approach for solving discrete NDPs. Dantzig et al. 
(1979) introduced a convex formulation assuming system optimum (SO) flow patterns and 
allowing continuous and discrete improvements; the solution algorithm was an extension to a 
decomposition approach introduced by Steenbrink (1974). Similarly, LeBlanc and Abdulaal 
(1979), Hoang (1982) and LeBlanc et al. (1984) suggested useful solution algorithms for NDP 
under the equilibrium of SO. On the other hand, user equilibrium (UE) based formulations are 
discussed in LeBlanc and Abdulaal and LeBlanc (1979), Marcotte (1983), LeBlanc and Boyce 
(1986), Suwansirikul et al. (1987), and Friesz et al. (1992). The solution methodologies are based 
on nonlinear optimization approaches, which could only handle small-size problems. 
 
Abu-Lebdeh and Benekohal (2000) and Girianna and Benekohal (2001) presented formulations 
and solutions to control of oversaturated arterials and network control problems, respectively. 
Control was formulated as an optimization of dynamical problems and Micro-Genetic 
Algorithms (GA) were used with binary coding to optimize green splits and offsets. Ceylan and 
Bell (2004; 2005) used GAs to optimize signal timing with consideration to traffic assignment. 
Park et al. (2001) used mesoscopic simulation with a GA-based optimizer to simultaneously 
optimize all signal parameters with consideration to oversaturated conditions. 
 
Gao et all (2004;2005) solved the discrete network design problem with the selection of link 
additions to an existing road network, with given demand from each origin to each destination. 
Chiou (2005) aimed to determine a continuous RND the set of link capacity expansions and 
corresponding equilibrium flows for which the measures of performance index for the network is 
optimal. A bi-level programming technique is used to formulate equilibrium network design 
problem. These two problems are formulated as bi-level programming problems with stochastic 
user equilibrium assignment as the second level programming problem. Lim et. all. (2005) 
formulated the continuous NDP for road expansion based on Stackelberg game where leader and 
follower exist, and allows for errors of travelers' behavior in choosing their routes. In order to 
solve the problem based on Stackelberg game, logit route choice model, in which there exists an 
explicit closed-form function between them, is used. The developed model will be applied to 
two example road networks for test and compared the results between the Stackelberg and Nash 
approaches to emphasize their difference between them. 
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All the existing solution methods mentioned so far uses analytical, numerical and heuristic 
algorithms to solve the RND. Solving teh RND with current methods may require a lengthy of 
mathematical formulations and solution procedures. But, there are no study solving the RND 
with a spreadsheet with an easy way by using spreadsheet facilities. Therefore, we proposed a 
spreadsheet road network design (SRND) model for stochastic equilibrium transportation 
networks in urban areas based on Stackelberg game. 
 
The SRND model uses a bi-level formulation (Yang and Yagar, 1995) approach, where upper 
level solves the network design parameters on the spreadsheet and lower level solves stochastic 
equilibrium traffic assignment problem using Stackelberg game with quasi-Newton method via 
solver facility. At the lower level, the MathCAD program is internally called to obtain the 
derivatives of the equilibrium link flows. They are perturbed with sensitivity values of the link 
traffic volumes and the design parameters are obtained with every change on equilibrium flows 
on spreadsheets. During the solution of the lower level problem, logit route choice model is used. 
Sensitivity analysis algorithm is carried out to obtain the variations on perception parameter,  . 
The perturbed flow is used to obtain the optimum or near-optimum values of design parameter.  
 
PROBLEM FORMULATION  
 
Let: 
 

),( LNG     : A directed transportation road network  
L     : Set of links  
N     : Set of nodes.  

)( sq,Z     : Network performance function  
];[ W wtwt  : Vector of travel demand between each origin-destination 

pairs,  
JIW  jisjiw ,;,({   : Set of origin-destination pairs,  

];[ L aqaq    : Vector of the average flow qa on link a, 
],;[ WP  wph wph  : Vector of all path flows, where element hp is traffic flow 

on path p.  
],,;[ WPL  wpa wapδ  : be the link/path incidence matrix, where 1ap  if link a is 

on path p, and 0ap  otherwise, 
],;[ WP  wp wwpΛ  : Origin-destination/path incidence matrix, where 1wp  if 

path p connects origin-destination pair w, and 0wp  
otherwise,  

];[ W wywy  : Expected minimum origin-destination cost and summation 
is over all links. 

)],([)( ssq,c aa qc  :Vector of all link travel times, where element ),( saa qc is 
travel time on link a as a function of flow on the link itself 
and design parameters 

s : Vector of feasible set of design parameters, Ss  
S     : Feasible set of design parameters. 
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Bi-level programming formulation to obtain the design parameters, s, and stochastic user 
equilibrium (SUE) link flows, q(s*) is  
 
 )(),())),(( sysqqZMinimise a

La

a 


ss*q
s

      (1) 

 subject to Ss  
 
where y(s) is the network improvement function and )),(( ss*q  is obtained by solving the 
following optimization problem  
 

dxxcZMinimise
a

q

a
q

a ),()()()(
)(

0

TT
1 ssq(s),cqsq(s),yts(s)*q

s





L

,   (2) 

 
subject to t=Λh(s),  q(s)=δh(s),  h(s) 0 

 
The solution of (2) for fixed demand, t, for O-D pairs w in W during a specified time period and 
the resulting equilibrium flows and corresponding travel times depend on design parameters. 
Thus, if any of the design parameters vary, the resulting equilibrium flows and corresponding 
travel times change. 
 
The key for solving the bi-level programming model is to obtain the response function through 
solving the lower level problem and replace the design parameter, s, in the upper level problem 
with the relationship between q and s - the response function. It connects the upper and lower 
level decision variables, which makes the two programming model dependent on each other.  
 
In the Stackelberg game, we have the following linear approximate expression  
 

)()()()( 0
0

ss
s

sq
sqsq a

aa 



         (3) 

 
where S0s  is the initial value of design parameter. For solving the lower level given in (2), the 
following conditions must be hold:  
 

0)),(( *
1 ssqZ a

 for any given Ss        (4) 
 
where )(* sq

a
denotes the SUE link flow on link a. If we assume the function ),(1 sqZ a  is to be 

twice differentiable, then the first-order expansion of ),(1 sqZ a  in the neighborhood of 
)),((),( 00 ssqsq aa   is given as 

 

)),(()),((
)),((),(

00*
1

00*
100*

11
ssqs

Z

ssqq

Z
ssqZsxZ









       (5) 
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where the derivative terms are the Jacobian matrices of ),(1 sqZ  with respect to q and s 

respectively, evaluated at )),(( 00* ssq , which here denote Jq  and Js. Since 0)),(( 00*
1 ssqZ  by 

SUE at 0s , and we determine 0s , )( 0* sq , qJ , sJ , then for some other 0ss  , we can approximately 
solve the equilibrium condition 0)),((1 ssqZ  for )(sq  as 
 

)())()((00 00* ssJsqsqJ sq         (6) 
 
By arranging expression (6) 
  

)(.)()( 010* ssJJsqsq sq 
        (7) 

 
(7) is obtained. Sensitivity of equilibrium link flow with respect to design parameter is expressed 
in the form of the implicit function theorem as 
 

sq JJ
s

q .1




  

 
If we use the logit route choice model at the lower level, Equation (8) is written to obtain path, pk, 
choice probabilities as:  
 






Ki

i

k
k

c

c
p

)exp(
)exp(



          (8) 

 
where ck is the route cost defined in (9) and θ is a road perception parameter of the error, K is 
path set for connecting each origin-destination pair, Ww . 
 


a

akak cc            (9) 

 
ac  is a cost for link a and ak  is a dummy variable that 1 if the link a is on the route k, 0 

otherwise. We have also a relation between 
kp  and link choice probability 

ap  as follows 
 

 
k

akka Kkcpcp )()(         (10) 

 
Two derivatives of Z1 with respect to q and s are required in (7). The derivatives are obtained by 
internally calling the MathCAD program in the SRND model. Derivatives of the equilibrium link 
flows are then perturbed to obtain new SUE link flows and design parameters. The algorithmic 
steps of the SRND is in the following way.  
 

Step 0 : 0n , 0s  (Initialization) 
Step 1 : 1 nn  
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Step 2 : Solve the lower level problem with 1ns with quasi-Newton method and yield 
 1nsq  

Step 3 : Calculate derivative information with MATHCAD and yield ),( 1nn ssq  by using 
following equation 

  )(..),( 1111   nn

sq

nn ssJJnqssq   

Step 4 : Solve upper level problem with ),( 1nn ssq on spreadsheet and yield ns  
Step 5 : Convergence check, if criterion is met, stop; otherwise; go to Step 1. 

 
A basic flowchart of the SRND model is given in Figure 1. It takes the initial values of design 
parameters and equilibrium link flows on spreadsheets and solves the upper level problem under 
SUE flow constraints and solves the lower level problem with quasi-Newton method. At the 
lower level, the derivatives and Jacobean matrix of the derivatives are obtained with MathCAD 
program. Then, “solver” function facility on spreadsheet solves the SUE traffic assignment 
problem. After that, the outputs are feed back to the upper level. The SRND model continues to 
the solution under converge criteria is met.  
 
Solver can be used to maximize or minimize the value of a “target” worksheet cell by altering the 
values of other selected “changing” cells in the spreadsheet that influence the value in the target 
cell. It also allows constraints to be placed on the values of any cells in the worksheet. Thus, it is 
a general-purpose tool capable of solving constrained linear and nonlinear optimization problems. 
It may be called whenever it needs to obtain SUE link flows. Furthermore, some macro codes are 
written to internally call the MathCAD to obtain derivatives of SUE link flows with respect to 
design parameter. 

 
Figure 1. Flowchart of SRND model 

No 

Yes 

START 

Initial Values of 
Solution Parameters 

Solve Lower Level 
Problem 

Calculate 
Derivatives 

Solve Upper Level 
Problem 

 
Convergence check 

 

STOP 
 

Call MathCAD 

Call Solver 
(Quasi-Newton Algorithm) 

Call Solver 
(quasi-Newton Algorithm) 
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In the solution process, the convergence criterion is set as 0.000001 that is the difference between 
current value of total network cost function and the previous one. Several convergence criteria 
may be used for stopping solution process. Illustrations of proposed SRND model with 
spreadsheet and MathCad model are applied to a simple network to test the model performance.  
 
NUMERICAL CALCULATION WITH SRND MODEL  
 
The chosen example involves a simple network with one O-D pair connecting 2 paths is given in 
Figure 2. Cost functions of both paths are a function of traffic volume and the design parameter s 
is only adopted on the link 1. In order to provide a better understanding the demand from node 1 
to 2 is considered as 1 unit (1 vehicle/sec). Thus, cost functions of the links are given as: 
 

2
11 21 sxc   

22 2 xc   
 
θ parameter represents the drivers’ perception error on transportation network and it is set as 1 at 
the beginning sate of SRND model application. Network construction cost is set to be  
 

2)1 )(20)(  nn sssy  
 
The equivalent path cost is expressed as: 
 

)ln(1
aaa qcEc


          (11) 

 
By given cost functions and construction cost, the upper level objective function turns into 
 

2)1
22

2
11 )(20)2(*)21()(  nn ssqqsqqc(s) s,q(s*),ZMinimise

s
  (12) 

 

 
Figure 2. Example network 

 
Equation (11) should satisfy the total flow condition 121 qq . In order to solve the lower level 
problem by arranging (2), the following expressions are obtained as: 
 

A B 

c1,s 

c2 
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SUE link traffic volumes for the link 1 and link 2 (q1 and q2) are calculated using Equation (13) 
and (14) by iterations.  
 
Jacobian matrix of the derivatives are 
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Traffic volumes are obtained by applying quasi-Newton method on spreadsheet solver menu for 
given s=1.  
 

6356.01 


x   3644.02 


x  
 
By using Step 3, the new perturbed traffic volumes are calculated with (7) as: 
 

588.0)(1 sx   412.0)(2 sx  
 
After that the full application of SRND model is carried out in an example network. The flow 
diagram of the model in detail is given in Figure 3 until solution is found. 
 
A sample spreadsheet is given on Figure 4. The values on the sheet denote the iteration number 
and constraints given by the user and the constraints that have to be satisfied by all of the 
parameters of the design problem. The traffic volumes under SUE assumption at the lower level 
program are calculated by macro after clicking the Start Process Button. Then the Jacobean 
matrices are determined by calculating derivative of the cost functions by internally calling the 
MathCAD program. Traffic volumes are perturbed with Jq

-1
*Js. After determining the new 

values, solver window is called and the upper level problem, which satisfied the traffic volume 
constraints is solved. This process continued until convergence criterion is satisfied. In this study, 
following stopping criteria is used. 
 
 

000001.0)(
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1



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nn
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Figure 3. Flow diagram of the SRND model 

 

 
Figure 4. Solution of the NDP using Spreadsheets 
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Calculate Derivatives with MathCAD 
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The application of SRND model outputs and parameter sensitivities of the example transport 
network is given in Table 1, where n is step number, q1 and q2 are traffic volumes, y(s) is the 
construction cost, Ec1 and Ec2 are the equivalent paths costs and the last column includes the 
value of total network cost. It is unavoidable for the y(s) to grow up throughout the iterations due 
to non-convex property of the problem. As can be seen in Table 1, the equivalent path costs are 
equal at the last two columns, but the network investment cost increase for every iteration which 
shows a costly structure of the investments and Braess paradox (Sheffi, 1985).  
 
The application of SRND model is carried out to obtain the convergence of the algorithm and the 
optimal or near optimal values of design parameter. The convergence behavior of the model is 
given in Figure 5. The algorithm reaches the optimum or near optimum value by about 7 
iterations.  
 
The change of the total network cost can be seen in Figure 6. The total network cost is about 22 
units at the first iteration and it is improved to a level of about 4 units that indicates about 80% 
improvement after 17 iteration.  
 

Table 1. Solution of the NDP on the sample network 
n x1 x2 s y(s) Ec1 Ec2 

0 0.636 0.364 1.000 20.000 1.355 1.355 
1 0.588 0.412 1.526 46.568 1.525 1.525 
2 0.570 0.430 1.772 62.786 1.587 1.587 
3 0.562 0.438 1.881 70.789 1.612 1.612 
4 0.559 0.441 1.929 74.432 1.623 1.623 
5 0.557 0.443 1.950 76.037 1.627 1.627 
6 0.557 0.443 1.959 76.734 1.629 1.629 
7 0.557 0.443 1.963 77.035 1.630 1.630 
8 0.556 0.444 1.964 77.164 1.630 1.630 
9 0.556 0.444 1.965 77.220 1.631 1.631 
10 0.556 0.444 1.965 77.245 1.631 1.631 
11 0.556 0.444 1.965 77.256 1.631 1.631 
12 0.556 0.444 1.965 77.261 1.631 1.631 
13 0.556 0.444 1.966 77.264 1.631 1.631 
14 0.556 0.444 1.966 77.266 1.631 1.631 
15 0.556 0.444 1.966 77.267 1.631 1.631 
16 0.556 0.444 1.966 77.268 1.631 1.631 
17 0.556 0.444 1.966 77.268 1.631 1.631 
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Convergence (θ=1 and s=1)
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Figure 5. Convergence graph 
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Figure 6. Change of the total cost function values by iterations 

 
SENSITIVITY ANALYSIS OF THE SRND MODEL 
 
Due to the non-convex nature of the RND and many parameters that need to be checked, it is 
therefore required to analyze the sensitivities of the SRND model parameters. The SRND model 
algorithm is checked for the different values of θ and s. Change of the traffic volumes and cost 
function values due to the different values of θ and design parameter s is given in Table 2. If θ 

increases the total network costs will decrease and if it decreases the network costs will increase. 
The change of the cost function value for different values of θ is given in Figure 7. Road network 
become stochastic when θ is less then 1, and the network will tend to reach the user equilibrium 
when θ is bigger then 1. This can be easily seen from Figure 7. 
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Table 2. Change of the traffic volumes and cost function values for different values of θ 

θ q1 q2 s min Z1[q,s,c(s)] 

0.1 0.469 0.531 6.289 3.111 
0.2 0.477 0.523 4.390 2.747 
0.5 0.509 0.491 2.731 2.453 
1 0.556 0.444 1.966 2.318 
2 0.616 0.384 1.513 2.239 
15 0.689 0.311 1.214 2.202 
10 0.728 0.272 1.108 2.201 

 
The change of traffic volumes and total network costs for given different values of design 
parameter s is given in Table 3. If the design parameter increases, where the new links may be 
constructed, total network cost increases.  
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Figure 7. Change of the network cost function value for different θ values. 

 
 

Table 3. Sensitivities of different design parameters 
s x1 x2 minZ1[q,s,c(s)] 

0.1 0.709 0.291 1.658 
0.2 0.676 0.324 1.826 
0.5 0.616 0.384 2.094 
0.6 0.601 0.399 2.151 
1 0.556 0.444 2.318 
2 0.485 0.515 2.543 
3 0.440 0.560 2.666 
5 0.382 0.618 2.802 
10 0.306 0.694 2.944 
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CONCLUSIONS 
 
The SRND model uses a bi-level formulation approach, where upper level solves the network 
design parameters on the spreadsheet and lower level solves stochastic equilibrium traffic 
assignment problem using Stackelberg game using quasi-Newton method on using solver facility. 
At the lower level, the MathCAD program is internally called to obtain the derivatives of the 
equilibrium link flows. Equilibrium link flows are perturbed with sensitivity values of the link 
traffic volumes and the design parameters are obtained with every change on equilibrium flows 
on spreadsheets. The flowchart of the HSRN model and corresponding convergence behavior is 
given. During the solution of the lower level problem, logit route choice model is used. 
Sensitivity analysis algorithm is carried out to obtain on the variations on perception parameter, 
 . The perturbed flow is used to obtain the optimum or near-optimum values of design 
parameter. Following conclusions may be drawn from this study. 
 
The SRND model may be applied to solve the bi-level RND problem by using spreadsheet under 
the assumption of Stackelberg game. The SUE link flows may be obtained by applying the quasi-
Newton method. Derivatives of the link and path cost functions may be calculated by internally 
calling the MathCAD program. The SRND model may provide visualization for transport 
network designers. It also obtained that the steady convergence may be achieved if RND problem 
is solved with spreadsheet. 
 
Sensitivity analysis of the perception parameter on path costs showed that if it decreases road 
networks users become stochastic that leads to SUE and if it increases the network leads to the 
user equilibrium.  
 
The sensitivity of the design parameters, s, a new link added to a network, leads to Braess 
paradox, which increases the total network cost.  
 
The proposed SRND model is applied in a very simple network to show its performance on a 
spreadsheet. It would be better to apply the model to a realistic size of network, but it may not 
affect the overall aim of this study since our aim is to solve the RND on spreadsheets. Future 
studies will be on the application of the SRND model for realistic size of transportation networks 
for various sets of design parameters.  
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