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Abstract 
 

In general, Continuous Network Design Problem (CNDP) is concerned with the optimal capacity expansion of 

existing links in a given network. The measure of network performance can be described as the sum of total 

travel times and the investment cost, converted to travel time, for capacity expansions of links. Due to the non-

convex characteristics of CNDP, the problem is formulated as a bi-level programming problem. Although 

proposed algorithms in literature are capable of solving CNDP for a given road network, an efficient algorithm, 

which is capable of finding the global or near global optima of the upper level decision variables of CNDP, is 

still needed. Therefore, this paper deals with the finding of optimal link capacity expansions in a given road 

network using the Artificial Bee Colony (ABC) algorithm. More precisely, a bi-level method has been proposed, 

in which the lower level problem is formulated as a user equilibrium traffic assignment model, solved by the 

ABC. To show the effectiveness of the ABC algorithm, the example road network is used for different size of 

travel demand. Results produced by the ABC algorithm are compared with the results obtained by Simulated 

Annealing (SA) and Genetic Algorithm (GA) taken from literature. According to the results, the ABC algorithm 

can be used effectively to solve CNDP with link capacity expansions within much less number of traffic 

assignments than SA and GA. 
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1 Introduction 
 

The Continuous Network Design Problem (CNDP) is at the core of transportation problems and has been 

extensively studied in the literature aiming to determine the optimal capacity expansions for a set of selected 

links in a given transportation network. The measure of network performance can be described as the sum of 

total travel times and the investment cost of link capacity expansions , converted to travel time. Determining the 

global or near global optimum solution is of great importance in CNDP. Due to the non -convex and non-smooth 

characteristics of the CNDP, it is formulated as bi-level programming problem. In CNDP, upper level can be 

modelled with an objective function defined as the sum of total travel time and total investment cost of link 

capacity expansions in a given network, whilst the lower level is formulated as a traffic assignment model. 

 

Abdulaal and LeBlanc (1979) were the first ones to solve CNDP problem for medium-sized realistic network 

using Hooke-Jeeves (HJ) algorithm. Suwansirikul et al. (1987) proposed the Equilibrium Decomposition 

Optimization (EDO) for finding an approximate solution to CNDP, and tested this heuristic on several networks. 

Marcotte and Marquis (1992) presented efficient implementations of heuristic procedures in small-sized 

networks for solving CNDP. Furthermore, Friesz et al. (1992) used Simulated Annealing (SA) approach to solve 

CNDP, and found that the proposed heuristic is more efficient than the Iterative Optimization Assignment (IOA) 

algorithm, HJ algorithm, and EDO approach for finding the global optimum solution. Friesz et al. (1993) 

presented a model for continuous multiobjective optimal design of a transpo rtation network. The results showed 

that SA is ideally suited for solving multi objective versions of the equilibrium network design problem. Davis 

(1994) used the generalized reduced gradient method and sequential quadratic programming to solve CNDP. 
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Meng et al. (2001) converted the bi-level program of CNDP to a single level continuously differentiable 

optimization problem. Chiou (2005) used a bi-level programming technique to formulate CNDP.  Four variants 

of gradient-based methods are presented and numerical comparisons are made with several test networks to solve 

CNDP. Similarly, Ban et al. (2006) proposed a relaxation method to solve CNDP when the lower level is a 

nonlinear complementary problem and obtained good results. Xu et al. (2009) used SA and Genetic Algorithm 

(GA) methods to find optimal solutions of CNDP. They found that when demand is large, SA is more efficient 

than GA in solving CNDP, and much more computational time is needed for GA to achieve the same optimal 

solution as SA.  

 

Although the proposed algorithms existed in literature are capable of solving CNDP for a given road network, an 

efficient algorithm, which is capable of finding the global or near global optimum solutions of the upper level 

optimization problem of CNDP, is still needed. It is also important to compare the efficiency of the available 

heuristic methods in literature, to find the most efficient ones. In fact, to evaluate the upper level objective 

function, a traffic assignment problem has to be solved in lower level and, to do this for a real road network, the 

computation time is considerably large. Therefore, this paper deals with the finding optimal link capacity 

expansions in a given road network using Artificial Bee Colony (ABC) algorithm. For this purpose, a bi-level 

model has been proposed, in which the lower level problem is formulated as User Equilibrium (UE) traffic 

assignment model and Frank-Wolfe (FW) method is used to solve it. 

 

The rest of this paper is organized as follows. The notations are given in Section 2. Problem formulation for 

CNDP subject to link capacity expansions is given in Section 3. In the next section, ABC algorithm is presented 

for finding the upper level decision variables for CNDP. In Section 5, numerical calculations are conducted on 

example road network. Concluding remarks and future study directions are given in Section 6. 

 

 

2 Notations  

 
A   the set of links, Aa  

rsc  the set of minimum path travel times between O-D pair rs SR  sr ,  

D  the vector of O-D pair demands,   SRDD rs  sr ,  

f  the vector of path flows,   rsKS,Rf  ksrf rs
k ,,  

g  the vector of investment costs,   Ag  ayg aa )(  

rsK  the set of paths between O-D pair SR  srrs ,  

R  the set of origins 

S  the set of destinations 

t  the vector of link travel times,   At  ayxt aaa ),(  

u  the vector of upper bound for link capacity expansions,   Au  aua ,  

x  the vector of equilibrium link flows,   Ax  axa ,  

y  the vector of link capacity expansions,   Ay  aya ,  

Z upper level objective function 

z lower level objective function 

  the conversion factor from investment cost to travel times  

rs
ka,  the link/path incidence matrix variables, AKSR rs  ak,sr ,, . 1, rs

ka  if route k  between O-

D pair rs uses link a, and 0, rs
ka  otherwise 

  the set of auxiliary link flows 

a , a  the parameters of link cost function, Aa  

a  the link capacity, Aa  

n  the step size at nth iteration  
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3 Problem Formulation  
 

The CNDP can be represented within the framework of a leader-follower or Stackelberg game, where the 

supplier is the leader and the user is the follower (Fisk, 1984). It is assumed that the leader as transportation 

planning manager can influence the user’s path choice behavior but cannot control it. The users make their 

decision in a user optimal manner under the given service level of transportation networks (Gao et al., 2007). 

The network planners of the upper level are assumed to make the decisions about the improvement of link 

capacities and investments to minimize the total system cost. This interaction between two groups can be 

formulated as bi-level programming model. Therefore, the bi-level programming model is used to solve CNDP 

with link capacity expansions  in this study. The upper level objective function for CNDP can be formulated as 

follows: 

 






Aa

aaaaaa
y

ygyxyyxtZ(x,y) ))()()),(((min            (1) 

 

s.t. A auy aa ,0  

 

The constraint ensures that the investment cost of link Aa  will not exceed the related budget. It is also the 

non-negativity constraint of the decision variables. 

 

In general, the CNDP models assume that the demand is given and fixed, and the user’s route choice is 

characterized by the UE assignment. The UE assignment problem at the lower level can be represented as 

follows: 
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where the constraints are definitional, conservation of the flow constraints and non-negativity, respectively. For 

solving UE assignment, the still most widely used solution algorithm is the FW algorithm. It was actually 

proposed for solving quadratic optimization problems with linear constraints (Frank and Wolfe, 1956). This 

method is especially useful for determining the equilibrium flows for transportation networks, since the direction 

finding step can be executed in a relatively efficient way. Therefore, we have used this algorithm for finding user 

equilibrium link flows in lower level optimization problem. It can be summarized as follows: 

 

 

Step 0: Set n=1. Get 
n
ax   through the all-or-nothing assignment, based on A att aa ),0( .  

Step 1: Set A axtt n
aa

n
a ),(  

Step 2: Perform all-or-nothing assignment based on 
n
at . This provides a set of auxiliary flows 

n
a . 

Step 3: Use golden section algorithm (see for details Sheffi, 1985), to find n that solves: 

 

   
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Step 4: Set A axxx n
a

n
an

n
a

n
a ),(1   

Step 5: Convergence test. If the stopping criterium given below in Eq. (4) is met, terminate the algorithm; 

otherwise set 1 nn  and go to Step 1. 
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where n
rsc is the minimum path travel time between O-D pair rs at the nth iteration. 

 

 

4 Artificial Bee Colony (ABC) Algorithm 
 

The foraging behaviors of honeybees have recently been one of the most interesting research areas in swarm 

intelligence. Some approaches have been proposed to model the specific intelligent behaviours of honey bee 

swarms and they have been applied for solving optimization problems. Tereshko (2000) considered a bee colony 

as a dynamical system gathering information from an environment and adjusting its behaviour in accordance to 

it. Lucic and Teodorovic (2002) and Teodorovic (2003) suggested to use bee swarm intelligence aimed at 

solving complex problems in traffic and transportation. Teodorovic and Dell’Orco (2005) proposed the bee 

colony optimization to solve combinatorial problems characterized by uncertainty, as well as deterministic 

combinatorial problems. Teodorovic and Dell’Orco (2008) presented an application of the bee colony 

optimization, efficient in solving the ride-matching problem. Their results showed that proposed metaheuristic 

appears very promising, and indicated that the development of new models based on swarm intelligence 

principles could significantly contribute to the solution of a wide range of complex engineering and management 

problems. The Artificial Bee Colony (ABC) algorithm is a new population-based metaheuristic approach 

proposed by Karaboga (2005) and further developed by Karaboga and Basturk (2007a, 2007b, 2008). It is 

inspired by the foraging behavior of honeybee swarm. The foraging bees are classified into three categories  

employed, onlookers and scouts. Half of the bee colony consists of employed bees, and another half consists of 

onlookers. In ABC algorithm, the position of a food source represents a possible solution to the optimization 

problem and the nectar amount of a food source corresponds to the quality (fitness) of the associated solution  

(Karaboğa and Akay, 2009).The number of employed bees or the onlooker bees is equal to the number of 

solutions in the population. Employed bees are responsible for searching available food sources and gathering 

required information. They also pass their food information to onlooker bees. The onlookers select good food 

sources from those found by the employed bees to further search the foods. When the quality of the food source 

is not improved through a predetermined number of cycles, the food source is abandoned by its employed bee. In 

this case, the employed bee becomes a scout and starts to search for a new food source in the vicinity of the hive.  

 

In ABC algorithm, each cycle of the search consists of three steps. At the initialization step, the ABC algorithm 

generates a randomly distributed initial population as number of SN, where SN denotes the number of employed 

bees or onlooker bees. Each initial solution ),.....,2,1( SNixi  is a D-dimensional vector which D is the number 

of decision variables of a given optimization problem. At the first step of the cycle, employed bees come into the 

hive and share with the bees waiting on the dance area information about nectar sources. A bee waiting on the 

dance area is called onlooker, and is responsible for making decision about the choice of a food source. At the 

second step, an onlooker chooses a food source area depending on the nectar information distributed by the 

employed bees on the dance area. As the nectar amount of a food source increases, the probability of choice of 

that food source increases as well. The determination of a new food source is carried out by the bees based on a 

visual comparison process of positions  of food sources. At the third step of the cycle, when a food source is 

abandoned by the bees, a new food source is randomly determined by a scout bee and replaces the abandoned 

one. These three steps are repeated until a predetermined number of cycles, called Maximum Cycle Number 

(MCN), is reached. An onlooker bee chooses a food source depending on the probability value , ip , as follows: 

 

  


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fit
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             (5) 

 

where ifit is the fitness value of solution i. In this way, the employed bees exchange their information with the 

onlookers. In order to share the information of nectar amount of the food sources, the employed bees use a 

proportional selection method known as “roulette wheel selection”.  

 

In order to produce a candidate food location from the old one in population, the following equation is used. 
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)( kjijijijij xxxv               (6) 

 

where ijv is the candidate food position which can replace the old one in the memory and ij  is a random number 

generated in the interval [-1,1]. The values SNk ,....,2,1 and Dj ,....,2,1  are randomly chosen indexes. Of 

course, k  must be different from i, to avoid that old and new location coincide, in order to find food sources 

having more nectar amount than the old one. The parameter ij controls the production of neighbour food 

sources around ijx , and represents the visual comparison of two food positions carried out by a bee. If a 

parameter value determined using Eq. (6) exceeds the constraints of the decision variables , the parameter is set to 

its upper and lower boundary, depending on which constraint has been exceeded.  

 

As mentioned above, the food source abandoned by the bees is replaced with a new food source by the scouts  at 

the third step of the cycle. In ABC algorithm, this is simulated by generating a random location and replacing the 

abandoned one with it. If a location cannot be further improved in a predetermined number of cycles, then that 

food source is assumed to be abandoned. The value of predetermined number of cycles , called ‘‘limit”, is an 

important control parameter of the algorithm. Karaboga and Akay (2009) proposed to determine this value as 

SN*D. This operation can be done using Eq.  (7). 

 

  

   )(1,0rand minmaxmin
jjjj

i xxxx                (7) 

 

After each candidate source location ijv is generated, its performance is compared with that of the old one. If the 

new food source has an equal or better nectar than the old source, it replaces the old one in the memory. 

Otherwise, the old one is retained in the memory. In other words, a greedy selection mechanism is employed as 

selection between the old and the candidate location. The steps of the ABC algorithm is given as: 

 

Step 0: Initialize the population of solutions ix , SNi ,....,2,1 and evaluate them 

Step 1: Generate new solutions iv for the employed bees by Eq. (6) and determine the quality of the solutions  

Step 2: Apply the greedy selection process for the generated new solutions in Step 1. 

Step 3: Calculate the probability values ip  for the solutions ix by Eq. (5) 

Step 4: Generate the new solutions for the onlookers  from the solutions ix  due to the probabilities ip using 

roulette wheel selection 

Step 5: Apply the greedy selection process for the onlookers  

Step 6: Determine the solution for the scout bee and replace it with produced solution ix by Eq. (7) 

Step 7: If the number of cycle is reached to MCN, the algorithm is terminated. Else go to Step 1. 

 

 

5 Numerical Examples 
 

In order to show the effectiveness and robustness of the ABC algorithm for CNDP, we have applied it on the test 

network adopted by Xu et al. (2009). It consists of 18 links and 6 nodes as shown in Fig. 1. The travel demand 

for this network includes three cases and is shown in Table 1. Case 1 describes the condition of light demand 

while case 2 and 3 are for heavy demand conditions. The results obtained through the ABC algorithm are 

compared with the results obtained by SA and GA taken from Xu et al. (2009) on the same network. Population 

size of the ABC algorithm (SN) and the maximum cycle number were set to 10 and 200, respectively. 

 

Table 1. Travel demand cases for the example network 

 

Case q16 q61 Total flow 

1 5 10 15 

2 10 20 30 

3 15 25 40 
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Figure 1. Example road network 

 

The link travel time function is defined as shown in Eq. (8) and its corresponding parameters are given in Table 

2.  
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The upper level objective function for the example road network is defined as in Eq. (9). au is set to the value of 

20 for this example network, to compare the results with those obtained by Xu et al. (2009). 
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s.t. A auy aa ,0  

 

 

Table 2. Parameters for the eighteen link network 

 

Link a a  a  a  ad  

1 1 10 3 2 

2 2 5 10 3 

3 3 3 9 5 

4 4 20 4 4 

5 5 50 3 9 

6 2 20 2 1 

7 1 10 1 4 

8 1 1 10 3 

9 2 8 45 2 

10 3 3 3 5 

11 9 2 2 6 

12 4 10 6 8 

13 4 25 44 5 

14 2 33 20 3 

15 5 5 1 6 

16 6 1 4.6 1 

17 5 9 45 2 

18 5 9 45 2 

 

The application of the ABC algorithm is tested on example road network, where the upper level optimization 

problem is solved using ABC algorithm, and UE traffic assignment is performed by way of FW method at the 

lower-level. The proposed algorithm has been executed in MATLAB programming, and performed on PC with 

Intel Core2 2.00 GHz, RAM 2 GB. Comparison of computation times for the ABC against the other compared 

1 
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algorithms for CNDP is difficult because each author uses a different computer, and in many cases, a different 

test network. However, one useful way of comparing computation times is in terms of the number of UE 

assignment (UE ) performed, since it is the most time consuming part of the algorithms. Therefore , this 

performance measure is used to compare the computation time of the ABC algorithm with the compared 

algorithms in this study. 

 

In the initialization step, the ABC algorithm was initially structured with randomly generated solution vectors 

within its memory. At the first step of the cycle, employed bees come into the hive and share the quality of the 

solution vectors (objective function values) with the bees waiting on the dance area. At the second step, an 

onlooker chooses a food source area depending on the quality information of the solution vectors distributed by 

the employed bees on the dance area. At the third step of the cycle, when the nectar of a food  source is 

abandoned by the bees, a new food source is randomly determined by a scout bee, and it replaces the abandoned 

one. These three steps are repeated until a predetermined MCN is reached. Then, it is assumed that the ABC 

algorithm has found optimum or near-optimum solution.  

 

The results for cases 1, 2 and 3 on the example road network are given in Fig. 2. Table 3 shows comparison of 

the values of link capacity expansions obtained by ABC, SA and GA. The results show that the performance of 

the ABC is much better than the compared algorithms in terms of the number of UE assignment and the best 

objective function value.   

 

Table 3. Comparison of ABC, SA and GA methods 

 

 Case 1 Case 2 Case 3 

 ABC SA GA ABC SA GA ABC SA GA 

1y  0.00 0.00 0.00 0.69 0.00 0.00 3.09 0.00 0.00 

2y  0.00 0.47 0.00 1.66 1.73 2.20 6.76 9.12 11.98 

3y  0.00 0.65 0.00 9.83 11.77 10.61 13.39 18.12 16.24 

4y  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5y  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

6y  5.76 6.53 4.47 8.09 4.75 6.68 13.49 4.98 5.40 

7y  0.00 0.80 0.00 0.00 0.14 0.00 0.00 0.11 0.00 

8y  0.00 0.25 0.00 0.00 0.78 0.00 2.30 1.58 6.04 

9y  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10y  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11y  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

12y  0.00 0.00 0.00 0.00 0.00 0.00 2.52 0.00 0.00 

13y  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

14y  0.00 0.84 0.00 1.32 5.94 1.22 12.08 11.66 12.28 

15y  0.04 0.14 0.00 0.01 1.51 6.30 0.15 2.97 0.82 

16y  7.88 7.34 7.54 19.99 18.45 11.93 19.99 19.71 19.99 

17y  0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

18y  0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

Z 190.40 205.89 191.26 488.50 505.39 515.09 735.09 739.54 744.39 

UE  2000 15000 50000 2000 42500 50000 2000 22500 50000 

 

 

In case 1, the ABC initially started with random generated solutions and picked up the best objective function 

value of about 630, as can be seen in Fig. 2. The best objective function value, resulting after 2000 number of 

UE assignments (200 MCN), is found as 190.40 for same case using the ABC. SA and GA reach their optimal 

values of 205.89 and 191.26, after 15000 and 50000 number of UE assignments respectively. Thus, it is clear 
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that, for this case, ABC is better than SA and GA in term of both number of UE assignments and best objective 

function value. It is remarkable that the ABC produced better functional value with much less number of UE 

assignments than the compared algorithms. Similarly, in case 2, the proposed algorithm yielded better 

performance in terms of both best objective function value and number of UE assignments. The ABC reached 

the value of 488.50 after 2000 UE assignments while SA and GA reach the values of 505.39 and 515.09, 

respectively, after 42500 and 50000 UE assigments , as shown in Table 3. In case 3, the ABC results slightly 

outperformed those generated by SA and GA, since they required much more number of UE assignments. The 

results showed that ABC is much more efficient and effective method than SA and GA for solving CNDP in 

terms of best objective function value and required number of UE assignments. 
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Figure 2. Performance of the ABC for all cases 

 

 

6 Conclusions 
 

In this paper, the ABC algorithm was proposed to solve CNDP with link capacity expansions. The CNDP is 

modeled as bi-level non-convex model. The upper level objective function is defined as the sum of total travel 

time and total investment costs of link capacity expansions on the road network, while the lower level problem is 

formulated as a user equilibrium traffic assignment model. To solve this problem we have used the Frank-Wolfe 

method. Numerical computations and comparisons have been carried out on example test network. According to 

the results, the ABC produced better results than SA and GA methods in terms of best objective function value 

and required number of UE assignments. The ABC outperformed SA and GA methods, and required much less 

number of UE assignments than the compared algorithms to reach the best functional values. It is notable that the 

ABC algorithm shows steady convergence towards the global or near global optimum for solving CNDP for all 

cases for the example network. In future work, the ABC will be applied to a real-sized network in order to 

demonstrate the applicability and the effectiveness of the proposed algorithm. 
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