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EXTENDED ABSTRACT

In this paper, an ant colony optimization approach for the parameter estimation of nonlinear
Muskingum model is proposed. To prevent negativity of outflows and storages, an indirect penalty
approach is imposed in the numerical solution of the model. The performance of the method is
compared with reported techniques given in the literature through both synthetic and real-life
example. The results obtained for both applications demonstrate that the proposed algorithm can
confidently be applied to estimate optimal parameter values of the nonlinear Muskingum model.

1. INTRODUCTION

The ability to accurately predict the movement of flood waves is of vital importance to river
engineers and managers. In the design of hydraulic structures, river improvement works, flood
protection and warning schemes, knowledge of water levels and discharge is of the essence. This is
reflected in the large amount of research effort which has been expended in the area of flood routing
and river modelling over many years [Wormleaton and Karmegam, 1984].

Flow routing may be considered as an analysis to trace the flow thorough a hydrologic system,
given the input. The difference between lumped and distributed system routing is that in a lumped
system model, the flow is calculated as a function of space and time throughout the system. Routing
by lumped system methods is sometimes called hydrologic routing, and routing by distributed
systems methods is sometimes referred to as hydraulic routing [Chow et al., 1988].

Hydraulic methods of routing involve the numerical solutions of either the convective-diffusion
equations or the one-dimensional Saint-Venant equations of gradually varied unsteady flow in open
channels. Hydrological methods use the principle of continuity and a relationship between
discharge and the temporary storage of excess volumes of water during the flood period. The
hydraulic methods are more accurate than hydrological methods, but hydraulic methods are more
complicated than hydrological methods. Also, hydraulic methods are required high demand on
computing technology on quantity and quality of input data [Singh, 1988]. In practical applications,
the hydrological routing methods are relatively simple to implement and reasonably accurate
[Haktanir and Ozmen, 1997]. An example of a simple hydrological flood routing technique used in
natural channels is the Muskingum flood routing method [Karahan, 2012].

The Muskingum method was first developed by U.S. Corps of Engineers for the flood control
studies of the Muskingum River basin in Ohio [McCarthy, 1938]. The standard procedure for
applying the Muskingum method involves two basic steps: calibration and prediction. In the
calibration step, a parameter estimation problem is solved in which the parameter values for the
Muskingum model of a river are determined by using historical inflow-outflow hydrograph data.
The prediction step is the solution of a routing problem in which the outflow hydrograph for a given
inflow hydrograph is determined by using the routing equations [Das, 2004].

The following hydrologic continuity and nonlinear storage equations are commonly used in the
Muskingum model.
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In the above equations s, [L®], 1, [L%T], and o, [L¥T] are simultaneous amounts of storage,

inflow and outflow, respectively, at time t; K [L**™T™] is storage-time constant and is greater than
0, and y is a weighting factor usually varying between 0 and 0.5 [Tung, 1985]; m is an exponent
for considering the effects of nonlinearity and is greater than 1 for nonlinear models (the original
linear model can be a special case of the nonlinear model where m is equal to 1). In the model, K,
7, and m are unknown parameters and S, and O, must be handled as non-negative variables.
Several mathematical techniques, such as segmented least-squares method [Gill, 1978], hybrid of
pattern search and local search [Tung, 1985], nonlinear least-squares method [Yoon and
Padmanabhan, 1993], Lagrange multiplier method [Das, 2004] and Broyden-Fletcher-Goldfarb-
Shanno method [Geem, 2006] have been applied for estimating three parameter values of the
model. However, these techniques have drawbacks of complex derivative requirement and/or good
initial vector assumption [Geem, 2011]. Thus, last decade, several researchers have also proposed
various heuristic algorithms such as genetic algorithm [Mohan, 1997; Karahan and Gurarslan,
2011], harmony search [Kim et al., 2001; Geem, 2011; Karahan et al., 2013], particle swarm
optimization [Chu and Chang, 2009; Gurarslan and Karahan, 2011], differential evolution [Xu et
al., 2012; Karahan and Gurarslan, 2013], Nelder-Mead simplex [Barati, 2011; Karahan, 2013] and
immune clonal selection [Luo and Xie, 2010] to the parameter estimation of nonlinear Muskingum
model.

In this paper, a novel optimal parameter estimation method for the nonlinear Muskingum model
is proposed. In the proposed method, to prevent negativity of outflows and storages, a penalty term
approach is applied in the numerical solution of the model. We used Ant Colony Optimization
Reduced Search Space (ACORSES) algorithm [Baskan et al., 2009] in the model with a numerical
routing procedure given by Tung [1985]. The proposed algorithm finds the best solution regardless
of the initial parameter values with fast convergence and few control parameters. The performance
of the method is compared with the reported techniques given in the literature through Wilson data
and River Wye 1960 December flood data. The results demonstrate that the proposed algorithm can
confidently be applied to estimate best parameter values of the nonlinear Muskingum model.

2. ROUTING PROCEDURE OF THE NONLINEAR MUSKINGUM MODEL

Rearranging Eq. (2), the rate of outflow O, can be obtained as [Tung, 1985],

(s (2
Ot_(l—zJ(KJ (1—;(}‘ ©

Combining Eqg. (3) and the continuity Eq. (1), the state equation can be obtained as,

1/m
ﬁ:_ L i + L It (4)
dt 1-y AK 1-y
S =S, +AS, (5)

Note that the unit time step is used in the Eq. (5). If infeasible values of K, #, m are selected,
negative values of O and St can be obtained in the numerical solution of Muskingum model.
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Hence, an indirect penalty function approach [Gurarslan and Karahan, 2011; Karahan et al., 2013]
is imposed to the numerical solution in order to prevent negativity (outflows and storages cannot be
negative quantities) as follows:

St*+l = Al |St+l| ! If St+1 < 0 (6a)
Ot:l = AZ |Ot+l| ’ If Ot+1 < 0 (6b)

ﬂ‘Z

where, % and are penalty constants (used as 1000 for this study), St is penalized next

storage, Ot s penalized next outflow. Note that, Se1 and Ot are positive but unrealistic values.
The zero-order numerical routing procedure given by Tung [1985] is preferred for making a
comparison and is slightly modified for preventing negativity of outflows and storages. Main steps
of this procedure are given as follows:

Step 1: Assume values for three parameters K, # and m.

Step 2: Calculate S using Eq. (2), where initial outflow is the same as the initial inflow.
Step 3: Calculate the time rate of change of storage volume using Eq. (4).

Step 4: Estimate the next accumulated storage (SM) using Eq. (5) or Eq. (6.a).

Step 5: Calculate next outflow (OM) using Eqg. (3) or Eq. (6.b).
Step 6: Repeat steps 2-5 for all times.

3. ANT COLONY OPTIMIZATION REDUCED SEARCH SPACE (ACORSES)
ALGORITHM

Ant Colony Optimization (ACO) is a part of the swarm intelligence and has been developed by
Dorigo et al. [1996] based on the fact that ants are able to find the shortest path between their nest
and food sources. ACO belongs to the class of biologically inspired heuristics. The procedure of the
ACO algorithms simulates the decision-making processes of ant colonies as they forage for food
and is similar to other artificial intelligent techniques. ACO is the one of the most recent meta-
heuristic technique that uses artificial ants to find solutions to optimization problems. The main idea
is that it is indirect local communication among the individuals of a population of artificial ants. In
nature, an individual ant is unable to communicate, but as a group, ants posses the ability to collect
food for their colony [Bell and McMullen, 2004]. The core of ant’s behaviour is the
communication between the ants by means of chemical pheromone trails, which enables them to
find shortest paths between their nest and food sources. The role of pheromone is to guide the other
ants towards the target points [Baskan et al., 2009].

Although there are many studies in literature with different heuristic methods to estimate the
parameters the Muskingum flood routing model, there is no application of ACO to this area. Thus,
in this study, a heuristic algorithm named as ACORSES proposed by Baskan et al. [Baskan et al.,
2009] was used to estimate the parameters of nonlinear Muskingum model. The ACORSES is based
on each ant searches only around the best solution of the previous iteration with p. The ACORSES
differs from other ACO’s in that its feasible search space (FSS) is reduced with  and its best
solution obtained from the previous iteration. In ACORSES model, ants search randomly the
solution within the FSS to reach global or near global optimum values. At the end of the each
iteration, only one of the ants is near to global optimum. After the first iteration, when global
optimum is searched around the best solution of the previous iteration using B, the algorithm will
quickly reach to the global optimum [Baskan et al., 2012]. The ACORSES is consisted of three
main phases; Initialization, pheromone update and solution phase as can be seen in Figure 1.

At the beginning of the first iteration, all ants search randomly to the best solution of a given
problem within the FSS, and old ant colony is created at initialization phase. After that, quantity of
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pheromone is updated. In the solution phase, new ant colony is created based on the best solution
from the old ant colony using Equation (7) and (8). Then, the best solutions of two colonies are
compared. At the end of the first iteration, FSS is reduced by B, where B is a vector, and best
solution obtained from the previous iteration. The range of the B may be chosen between minimum
and maximum bounds of any given problem as proposed by Baskan et al. [2009]. The solution
vector of the each ant is updated using following expression:

Initialization
FORI=1TOI (I=iteration number)
IF i=1 THEN generate m random ants within FSS
ELSE reduce FSS with range [ X, + ;% = 1]

END IF
FORi=1 TOm

Determine f(x>*)  (old ant colony)

best

Save X,
END

Pheromone update

Pheromone evaporation using (9)
Update pheromone trail using (10)

Solution phase

Determine search direction using (8)
Generate the values of o vector

FORi=1TOm
Determine the values of new colony using (7)

Determine f(x>*)  (newant colony)

best

Save X,
END

IF f(thest)new < f(thest)old THEN Xglobalmin — (thest)new

lobalmi besty old
ELSE Xgo almin :(Xt €s )0
END IF
a, =a,,*099

B =B.7099
END

Figure 1: Steps of ACORSES [Baskan et al., 2009].
X = x kO 1 o t=132...10 @)

k (new) . . } ) k(old) _ . .
where % is the solution vector of the kth ant at iteration t, *is the solution obtained
from the previous step at iteration t, and < is a vector generated randomly to determine the length

of jump.
In Eq. (7), (+) sign is used when point X is on the left of the best solution on the x coordinate

axis. (-) sign is used when point X is on the right of the best solution on the same axis. The
direction of search is defined by Eq. (8).

Xbest — thest +(thest *001) (8)
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i f)< f(xtm), (+) sign is used in Eq. (7). Otherwise, (-) sign is used. (+) sign defines the
search direction to reach to the global optimum. o value is used to define the length of jump, and it
will be gradually decreased in order not to pass over global optimum. At the end of the each
iteration, a new ant colony is developed as the number of colony size that is generated at the
beginning of the each iteration. Any of the newly created solution vectors may be outside the
reduced search space that is created at the beginning of the each iteration. Therefore, created new
ant colony prevents being trapped in bad local optimum [Baskan et al., 2009]. Quantity of
pheromone is reduced to simulate the evaporation process of real ant colonies using Eg. (9) in the
pheromone update phase. After reducing of the number of pheromone, it is updated using Eq. (10).

7, =01%7 9)

7, =7, +0.01* f (=) (10)

4. NUMERICAL APPLICATIONS

In order to fairly compare the results, two examples are solved through the developed model
with Wilson data [Wilson, 1974] and River Wye December 1960 flood data [NERC, 1975]. The
objective function to be minimized is the sum of the squared residuals (SSQ) between observed and
calculated outflows as follows:

minimize SSQ:i[Ot—(ﬁt(K,;(,m)}2 (11)

t=1

where, 0, denotes the observed outflow, O, denotes the calculated outflow and N denotes the
number of time step. The ranges of three parameters used in the applications are selected as

K=00-10 %=00-05 354 m=10-3.0, The stopping condition was selected as a fixed iteration
number. ACORSES algorithm was run 100 times both applications to achieve average results. For
each run, the initial population was randomly created by means of using different seed numbers. In
the ACORSES algorithm, required iteration number and colony size were selected according to the
results of the sensitivity analysis with Wilson data.

5. APPLICATION TO DATASET GIVEN BY WILSON

The parameter estimation technique for the nonlinear Muskingum model using ACORSES
algorithm is applied to data set given by Wilson [1974], which has been studied by Mohan [1997],
Kim et al. [2001], Das [2004], Geem [2006], Luo and Xie [2010] , Geem [2011], Barati [2011], Xu
et al. [2012] and Karahan et al. [2013].

In order to determine the suitable maximum iteration number and colony size values, a
sensitivity analysis was carried out thorough data set given by Wilson [1974]. Statistical evaluation
of the parameters, SSQ’s, iteration number and CPU times for different colony sizes (CS) is
presented in Table 1. The suitable CS value is selected as 10 for this problem in terms of requiring
less CPU time. As can clearly be seen in Table 1, there is extremely small difference between the
best solution and worst solution of 100 model runs. Standard deviation of SSQ’s of 100 runs is
1.17E-13 for CS=10. Global optimum is always found for all CS values in the 100 model runs. The
proposed algorithm is free from infeasible starting vectors and computational divergence. Required
CPU time of the proposed algorithm for 2,000 iterations is 6.15 second.

Table 2 presents the statistical evaluation of the parameters, SSQ’s and CPU times according to
the different fixed iteration number. As can be seen in Table 2, there was not a significant change in
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the results after 2,000 iterations. Thus, this fixed iteration value is appropriate for a stopping criteria
in both applications.

Table 3 shows the comparison of the best parameters and SSQ values for Wilson data obtained
from various techniques such as genetic algorithm (GA), harmony search (HS), Broyden-Fletcher-
Goldfarb-Shanno (BFGS) technique, parameter-setting-free harmony search (PSFHS), differential
evolution (DE), hybrid harmony search BFGS (HS-BFGS) algorithm and ACORSES algorithm. As
can be given in Table 3, the best parameters (0.086249, 0.286917, 1.868087) and the corresponding
SSQ value (36.767888) obtained by ACORSES algorithm is better than all techniques given in the
literature. CPU time of the proposed algorithm for 2000 iteration is only 6.15 second.

Computed outflows of Wilson data which were obtained by different methods are given in Table
4. As can be seen in Table 4, computed outflows from ACORSES are better than the other methods
except that HS-BFGS. ACORSES and HS-BFGS algorithms give same results.

The comparison of the observed and computed hydrograph of Wilson data for the best solution
vector is presented in Figure 2. As can be seen in Figure 2, computed hydrograph is well suited to
the observed hydrograph.

Table 1: Statistical evaluation of the parameters, SSQ'’s, iteration number and CPU times for different colony sizes CS
values (2,000 iteration).

Statistical

CS values K X m SSQ CPU
Best 0.086249 0.286917 1.868087 36.767888 6.15
10 Worst 0.086249 0.286917 1.868087 36.767888 6.72
Mean 0.086249 0.286917 1.868087 36.767888 6.34
Std. Dev. 3.59E-09 1.65E-09 9.20E-09 1.17E-13 0.13
Best 0.086249 0.286917 1.868087 36.767888 10.84
20 Worst 0.086249 0.286917 1.868087 36.767888 12.39
Mean 0.086249 0.286917 1.868087 36.767888 11.77
Std. Dev. 2.99E-09 1.31E-09 7.67E-09 9.42E-14 0.36
Best 0.086249 0.286917 1.868087 36.767888 17.00
30 Worst 0.086249 0.286917 1.868087 36.767888 18.78
Mean 0.086249 0.286917 1.868087 36.767888 17.85
Std. Dev. 3.19E-09 1.48E-09 8.20E-09 1.09E-13 0.38
Best 0.086249 0.286917 1.868087 36.767888 23.03
40 Worst 0.086249 0.286917 1.868087 36.767888 26.47
Mean 0.086249 0.286917 1.868087 36.767888 24.25
Std. Dev. 2.96E-09 1.27E-09 7.66E-09 9.63E-14 0.45
Best 0.086249 0.286917 1.868087 36.767888 29.81
50 Worst 0.086249 0.286917 1.868087 36.767888 32.79
Mean 0.086249 0.286917 1.868087 36.767888 30.53

Std. Dev. 2.95E-09 1.44E-09 7.54E-09 9.94E-14 0.46
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Table 2: Statistical evaluation of the parameters, SSQ’s and CPU times for different iteration number (CS=10).

Iteration Statistical
Number Values K 4 m SSQ CPUE)
Best 0.086210 0.286902 1.868027 36.767889 2.95
1000 Worst 0.086273 0.286928 1.868187 36.767894 4.01
Mean 0.086249 0.286915 1.868087 36.767890 3.36
Std. Dev. 1.22E-05 5.81E-06 3.15E-05 1.13E-06 0.23
Best 0.086249 0.286916 1.868087 36.767888 4.60
1500 Worst 0.086249 0.286917 1.868088 36.767888 5.12
Mean 0.086249 0.286917 1.868087 36.767888 475
Std. Dev. 7.92E-08 3.85E-08 2.03E-07 4.92E-11 0.09
Best 0.086249 0.286917 1.868087 36.767888 6.10
2000 Worst 0.086249 0.286917 1.868087 36.767888 7.33
Mean 0.086249 0.286917 1.868087 36.767888 6.40
Std. Dev. 3.45E-09 1.37E-09 8.90E-09 1.50E-13 0.18
Best 0.086249 0.286917 1.868087 36.767888 7.68
2500 Worst 0.086249 0.286917 1.868087 36.767888 8.19
Mean 0.086249 0.286917 1.868087 36.767888 7.85
Std. Dev. 3.51E-09 1.58E-09 8.99E-09 1.02E-13 0.09
Best 0.086249 0.286917 1.868087 36.767888 9.14
3000 Worst 0.086249 0.286917 1.868087 36.767888 10.48
Mean 0.086249 0.286917 1.868087 36.767888 9.37
Std. Dev. 3.50E-09 1.64E-09 8.96E-09 1.09E-13 0.18

Table 3: Comparison of the best parameter and SSQ values obtained by diffferent methods for Wilson data.

Method K X m SSQ
GA 0.1033 0.2813 1.8282 38.2363
HS 0.0883 0.2873 1.8630 36.7829
BFGS 0.0863 0.2869 1.8679 36.7679
PSF-HS 0.0864 0.2869 1.8677 36.7680
DE 0.5175 0.2869 1.868 36.77
HS-BFGS 0.086249 0.286917 1.868088 36.767888

ACORSES 0.086249 0.286917 1.868088 36.767888
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Table 4: Comparison of the observed and computed outflows for Wilson data.

Time Iy O Computed outflows (cms)
(h) (cms)  (cms) GA HS BFGS PSF-HS DE HS-BFGS  ACORSES
0 22 22 220 220 22.0 22.0 22.0 22.0 22.0
6 23 21 220 220 22.0 22.0 22.0 22.0 22.0
12 35 21 224 224 22.4 22.4 224 224 22.4
18 71 26 264 266 26.6 26.6 26.6 26.6 26.6
24 103 34 342 344 345 345 345 345 345
30 111 44 442 441 44.2 44.2 44.2 44.2 44.2
36 109 55 570 56.8 56.9 56.9 56.9 56.9 56.9
42 100 66 68.2  68.1 68.1 68.1 68.1 68.1 68.1
48 86 75 772 771 77.1 77.1 77.1 77.1 77.1
54 71 82 833 833 83.3 83.3 83.3 83.3 83.3
60 59 85 857 859 85.9 85.9 85.9 85.9 85.9
66 47 84 842 845 84.5 84.5 84.5 84.5 84.5
72 39 80 80.2 806 80.6 80.6 80.6 80.6 80.6
78 32 73 733 737 73.7 73.7 73.7 737 73.7
84 28 64 65.1 654 65.4 65.4 65.4 65.4 65.4
90 24 54 558  56.0 56.0 56.0 56.0 56.0 56.0
96 22 44 46.7  46.7 46.7 46.7 46.7 46.6 46.6
102 21 36 380 378 37.7 37.8 37.8 377 37.7
108 20 30 309 305 30.5 30.5 30.5 304 304
114 19 25 257 253 25.2 25.2 252 252 25.2
120 19 22 222 218 21.7 21.7 217 217 21.7
126 18 19 20.3 200 20.0 20.0 20.0 20.0 20.0
120
= Observed
100
== Computed
= 80
E 60
3
T 40
20 -0
0
0 20 40 60 80 100 120 140

Time (h)

Figure 2: Comparison of the observed and computed hydrograph of Wilson data for the best solution vector.
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6. APPLICATION TO RIVER WYE DECEMBER 1960 FLOOD

An example of the 1960 flood in the River Wye in the UK is presented here [NERC, 1975]. The
69.75 km stretch of the River Wye from Erwood to Belmont has no tributaries and very small
lateral inflow. It is, thus, an excellent example to demonstrate the use of flood routing techniques
[Bajracharya and Barry, 1997].

Computed outflows of River Wye December 1960 Flood which were obtained by a three-
parameter linear Muskingum model considering lateral flow (LMM-L) [O’Donnell, 1985] and
ACORSES methods are given in Table 5. As can be seen in Table 5, computed outflows from
ACORSES are better than the LMM-L method. The comparison of the observed and computed
hydrograph of these two methods is presented in Figure 3. As can be seen in Figure 3, computed
hydrograph obtained by ACORSES is well suited to the observed hydrograph.

The best parameters (0.079235, 0.409238, 1.581483) and the corresponding SSQ value
(37944.14) obtained by ACORSES algorithm is better than LMM-L method. CPU time of the
proposed algorithm for 2000 iteration is only 8.16 second. The SSQ value of LMM-L method is
computed as 251802 for the given parameters. ACORSES and HS-BFGS algorithms give same
results for both examples. It can be said that HS-BFGS is faster than ACORSES for obtaining
global optimum. But, HS-BFGS needs a good knowledge of gradient-based computations.

Table 5: Comparison of the observed and computed outflows for River Wye December 1960 flood.

Time It O Computed outflows (cms)

(h) (cms) (cms) LMM-L HS-BFGS ACORSES

0 154 102 102 154 154

6 150 140 116 154 154
12 219 169 120 152 152
18 182 190 147 181 181
24 182 209 158 191 191
30 192 218 165 185 185
36 165 210 176 187 187
42 150 194 178 179 179
48 128 172 176 162 162
54 168 149 164 141 141
60 260 136 160 154 154
66 471 228 167 198 198
72 717 303 218 264 264
78 1092 366 303 344 344
84 1145 456 484 416 416
90 600 615 690 599 599
96 365 830 700 871 871
102 277 969 642 834 834
108 227 665 572 689 689
114 187 519 505 535 535
120 161 444 442 397 397
126 143 321 386 283 283
132 126 208 338 202 202
138 115 176 296 152 152
144 102 148 260 124 124

150 93 125 228 106 106




1052

Table 5: Comparison of the observed and computed outflows for River Wye December 1960 flood (continued).

Time Iy O, Computed outflows (cms)

() (cms) (cms) LMM-L HS-BFGS ACORSES
156 88 114 201 94 94
162 82 106 179 88 88
168 76 97 160 82 82
174 73 89 144 75 75
180 70 81 130 73 73
186 67 76 118 69 69
192 63 71 109 66 66
198 59 66 100 62 62

1000
= Observed
800

== Comptited

600

400

Flow Rate {cms)

200

0] 20 40 60 80 100 120 140 160 180 200

Time (h)

Figure 3: Comparison to observed and computed hydrograph of River Wye December 1960 Flood data.

7. CONCLUSIONS

This study proposes an ant colony algorithm for a nonlinear Muskingum flood routing model.
The proposed algorithm overcame the disadvantages of mathematical techniques (initial vector
setting, local optima and diverging). In each different model run, true global optimum is always
obtained. In the proposed method, non-negativity restrictions are imposed on the model with an
effective indirect penalty approach. ACORSES algorithm found the best solution among different
methods given in the literature. The proposed algorithm is very robust. The results obtained
demonstrate that the ACORSES algorithm can confidently be applied to estimate optimal parameter
values of the nonlinear Muskingum model.
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