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EXTENDED ABSTRACT 

In this paper, an ant colony optimization approach for the parameter estimation of nonlinear 

Muskingum model is proposed. To prevent negativity of outflows and storages, an indirect penalty 

approach is imposed in the numerical solution of the model. The performance of the method is 

compared with reported techniques given in the literature through both synthetic and real-life 

example. The results obtained for both applications demonstrate that the proposed algorithm can 

confidently be applied to estimate optimal parameter values of the nonlinear Muskingum model.  

1. INTRODUCTION 

The ability to accurately predict the movement of flood waves is of vital importance to river 

engineers and managers. In the design of hydraulic structures, river improvement works, flood 

protection and warning schemes, knowledge of water levels and discharge is of the essence. This is 

reflected in the large amount of research effort which has been expended in the area of flood routing 

and river modelling over many years [Wormleaton and Karmegam, 1984]. 

Flow routing may be considered as an analysis to trace the flow thorough a hydrologic system, 

given the input. The difference between lumped and distributed system routing is that in a lumped 

system model, the flow is calculated as a function of space and time throughout the system. Routing 

by lumped system methods is sometimes called hydrologic routing, and routing by distributed 

systems methods is sometimes referred to as hydraulic routing [Chow et al., 1988]. 

Hydraulic methods of routing involve the numerical solutions of either the convective-diffusion 

equations or the one-dimensional Saint-Venant equations of gradually varied unsteady flow in open 

channels. Hydrological methods use the principle of continuity and a relationship between 

discharge and the temporary storage of excess volumes of water during the flood period. The 

hydraulic methods are more accurate than hydrological methods, but hydraulic methods are more 

complicated than hydrological methods. Also, hydraulic methods are required high demand on 

computing technology on quantity and quality of input data [Singh, 1988]. In practical applications, 

the hydrological routing methods are relatively simple to implement and reasonably accurate 

[Haktanir and Ozmen, 1997]. An example of a simple hydrological flood routing technique used in 

natural channels is the Muskingum flood routing method [Karahan, 2012]. 

The Muskingum method was first developed by U.S. Corps of Engineers for the flood control 

studies of the Muskingum River basin in Ohio [McCarthy, 1938]. The standard procedure for 

applying the Muskingum method involves two basic steps: calibration and prediction. In the 

calibration step, a parameter estimation problem is solved in which the parameter values for the 

Muskingum model of a river are determined by using historical inflow-outflow hydrograph data. 

The prediction step is the solution of a routing problem in which the outflow hydrograph for a given 

inflow hydrograph is determined by using the routing equations [Das, 2004]. 

The following hydrologic continuity and nonlinear storage equations are commonly used in the 

Muskingum model. 
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In the above equations 
tS  [L

3
], 

tI  [L
3
/T], and 

tO  [L
3
/T] are simultaneous amounts of storage, 

inflow and outflow, respectively, at time t; K [L
3(1-m)

T
m

] is storage-time constant and is greater than 

0, and   is a weighting factor usually varying between 0 and 0.5 [Tung, 1985]; m is an exponent 

for considering the effects of nonlinearity and is greater than 1 for nonlinear models (the original 

linear model can be a special case of the nonlinear model where m is equal to 1). In the model, K, 

 , and m are unknown parameters and 
tS  and 

tO  must be handled as non-negative variables. 

Several mathematical techniques, such as segmented least-squares method [Gill, 1978], hybrid of 

pattern search and local search [Tung, 1985], nonlinear least-squares method [Yoon and 

Padmanabhan, 1993], Lagrange multiplier method [Das, 2004] and Broyden-Fletcher-Goldfarb-

Shanno method [Geem, 2006] have been applied for estimating three parameter values of the 

model. However, these techniques have drawbacks of complex derivative requirement and/or good 

initial vector assumption [Geem, 2011]. Thus, last decade, several researchers have also proposed 

various heuristic algorithms such as genetic algorithm [Mohan, 1997; Karahan and Gurarslan, 

2011], harmony search [Kim et al., 2001; Geem, 2011; Karahan et al., 2013], particle swarm 

optimization [Chu and Chang, 2009; Gurarslan and Karahan, 2011], differential evolution [Xu et 

al., 2012; Karahan and Gurarslan, 2013], Nelder-Mead simplex [Barati, 2011; Karahan, 2013] and 

immune clonal selection [Luo and Xie, 2010] to the parameter estimation of nonlinear Muskingum 

model.  

In this paper, a novel optimal parameter estimation method for the nonlinear Muskingum model 

is proposed. In the proposed method, to prevent negativity of outflows and storages, a penalty term 

approach is applied in the numerical solution of the model. We used Ant Colony Optimization 

Reduced Search Space (ACORSES) algorithm [Baskan et al., 2009] in the model with a numerical 

routing procedure given by Tung [1985]. The proposed algorithm finds the best solution regardless 

of the initial parameter values with fast convergence and few control parameters. The performance 

of the method is compared with the reported techniques given in the literature through Wilson data 

and River Wye 1960 December flood data. The results demonstrate that the proposed algorithm can 

confidently be applied to estimate best parameter values of the nonlinear Muskingum model. 

2. ROUTING PROCEDURE OF THE NONLINEAR MUSKINGUM MODEL 

Rearranging Eq. (2), the rate of outflow tO  can be obtained as [Tung, 1985], 

1/
1

1 1

m

t

t t

S
O I

K



 

    
     

     
  (3) 

Combining Eq. (3) and the continuity Eq. (1), the state equation can be obtained as, 
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dS S
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    
      

     
                              (4) 

1t t tS S S                                                                 (5) 

 Note that the unit time step is used in the Eq. (5). If infeasible values of K,  , m are selected, 

negative values of tO  and tS  can be obtained in the numerical solution of Muskingum model. 
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Hence, an indirect penalty function approach [Gurarslan and Karahan, 2011; Karahan et al., 2013] 

is imposed to the numerical solution in order to prevent negativity (outflows and storages cannot be 

negative quantities) as follows:  

*

1 1 1 1  ,   S 0t t tS S if                                                    (6.a) 

*

1 2 1 1 ,   0t t tO O if O                                                   (6.b) 

where, 1  and 2   are penalty constants (used as 1000 for this study), 
*

1tS   is penalized next 

storage, 
*

1tO   is penalized next outflow. Note that, 
*

1tS   and 
*

1tO   are positive but unrealistic values. 

The zero-order numerical routing procedure given by Tung [1985] is preferred for making a 

comparison and is slightly modified for preventing negativity of outflows and storages. Main steps 

of this procedure are given as follows: 

 

Step 1: Assume values for three parameters K,   and m. 

Step 2:  Calculate tS  using Eq. (2), where initial outflow is the same as the initial inflow. 

Step 3: Calculate the time rate of change of storage volume using Eq. (4). 

Step 4: Estimate the next accumulated storage ( 1tS  ) using Eq. (5) or Eq. (6.a).  

Step 5: Calculate next outflow ( 1tO  ) using Eq. (3) or Eq. (6.b).   

Step 6: Repeat steps 2-5 for all times. 

3. ANT COLONY OPTIMIZATION REDUCED SEARCH SPACE (ACORSES) 

ALGORITHM 

Ant Colony Optimization (ACO) is a part of the swarm intelligence and has been developed by 

Dorigo et al. [1996] based on the fact that ants are able to find the shortest path between their nest 

and food sources. ACO belongs to the class of biologically inspired heuristics. The procedure of the 

ACO algorithms simulates the decision-making processes of ant colonies as they forage for food 

and is similar to other artificial intelligent techniques. ACO is the one of the most recent meta-

heuristic technique that uses artificial ants to find solutions to optimization problems. The main idea 

is that it is indirect local communication among the individuals of a population of artificial ants. In 

nature, an individual ant is unable to communicate, but as a group, ants posses the ability to collect 

food for their colony [Bell and McMullen, 2004].  The core of ant’s behaviour is the 

communication between the ants by means of chemical pheromone trails, which enables them to 

find shortest paths between their nest and food sources. The role of pheromone is to guide the other 

ants towards the target points [Baskan et al., 2009]. 

Although there are many studies in literature with different heuristic methods to estimate the 

parameters the Muskingum flood routing model, there is no application of ACO to this area. Thus, 

in this study, a heuristic algorithm named as ACORSES proposed by Baskan et al. [Baskan et al., 

2009] was used to estimate the parameters of nonlinear Muskingum model. The ACORSES is based 

on each ant searches only around the best solution of the previous iteration with β. The ACORSES 

differs from other ACO’s in that its feasible search space (FSS) is reduced with β and its best 

solution obtained from the previous iteration. In ACORSES model, ants search randomly the 

solution within the FSS to reach global or near global optimum values. At the end of the each 

iteration, only one of the ants is near to global optimum. After the first iteration, when global 

optimum is searched around the best solution of the previous iteration using β, the algorithm will 

quickly reach to the global optimum [Baskan et al., 2012]. The ACORSES is consisted of three 

main phases; Initialization, pheromone update and solution phase as can be seen in Figure 1. 

At the beginning of the first iteration, all ants search randomly to the best solution of a given 

problem within the FSS, and old ant colony is created at initialization phase. After that, quantity of 
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pheromone is updated. In the solution phase, new ant colony is created based on the best solution 

from the old ant colony using Equation (7) and (8). Then, the best solutions of two colonies are 

compared. At the end of the first iteration, FSS is reduced by β, where β is a vector, and best 

solution obtained from the previous iteration. The range of the β may be chosen between minimum 

and maximum bounds of any given problem as proposed by Baskan et al. [2009]. The solution 

vector of the each ant is updated using following expression: 

 
                        Initialization 

                             FOR i=1 TO I              (I=iteration number) 

 IF i=1 THEN  generate m random ants within FSS 

                             ELSE reduce FSS with range [ 1 1;best best

t tx x    ] 

                             END IF 

                             FOR i=1 TO m 

                             Determine  ( )       old ant colonybest

tf x  

                             Save 
best

tx
 

 END 

 

                          Pheromone update  

                             Pheromone evaporation using (9) 

                             Update pheromone trail using (10) 

                          

                            Solution phase 

                Determine search direction using (8) 

                             Generate the values of α vector 

 

                             FOR i=1 TO m          

                             Determine the values of  new colony using (7)    

                             Determine  ( )       new ant colonybest

tf x  

                             Save 
best

tx
 

                             END
     

           

                             IF 
oldbest

t

newbest

t xfxf )()(   THEN 
newbest

t

global xx )(min   

                             ELSE  
oldbest

t

global xx )(min   

                              END IF 

                              99.0*1 tt   

                             
99.0*1 tt   

                              END 

Figure 1: Steps of ACORSES [Baskan et al., 2009]. 

( ) ( )                 ( 1,2,....., )k new k old

t tx x t I     
 
   (7) 

where 
)(newk

tx
 is the solution vector of the kth ant at iteration t,  

( )k old

tx is the solution obtained 

from the previous step at iteration t, and    is a vector generated randomly to determine the length 

of jump.  

In Eq. (7), (+) sign is used when point  
k

tx  is on the left of the best solution on the x coordinate 

axis. (-) sign is used when point 
k

tx  is on the right of the best solution on the same axis. The 

direction of search is defined by Eq. (8). 

( *0.01)best best best

t t tx x x                                                      (8) 
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If ( ) ( )best best

t tf x f x , (+) sign is used in Eq. (7). Otherwise, (-) sign is used.  (+) sign defines the 

search direction to reach to the global optimum. α value is used to define the length of jump, and it 

will be gradually decreased in order not to pass over global optimum. At the end of the each 

iteration, a new ant colony is developed as the number of colony size that is generated at the 

beginning of the each iteration. Any of the newly created solution vectors may be outside the 

reduced search space that is created at the beginning of the each iteration. Therefore, created new 

ant colony prevents being trapped in bad local optimum [Baskan et al., 2009]. Quantity of 

pheromone is reduced to simulate the evaporation process of real ant colonies using Eq. (9) in the 

pheromone update phase. After reducing of the number of pheromone, it is updated using Eq. (10). 

10.1*t t                                                                             (9) 

1 10.01* ( )best

t t tf x                                                           (10) 

4. NUMERICAL APPLICATIONS 

In order to fairly compare the results, two examples are solved through the developed model 

with Wilson data [Wilson, 1974] and River Wye December 1960 flood data [NERC, 1975]. The 

objective function to be minimized is the sum of the squared residuals (SSQ) between observed and 

calculated outflows as follows: 

minimize  
2

1

ˆ , ,
N

t t

t

SSQ O O K m


  
                              (11) 

where, 
tO  denotes the observed outflow, ˆ

tO  denotes the calculated outflow and N denotes the 

number of time step. The ranges of three parameters used in the applications are selected as 
0.0 1.0K   , 0.0 0.5    and 1.0 3.0m   . The stopping condition was selected as a fixed iteration 

number. ACORSES algorithm was run 100 times both applications to achieve average results. For 

each run, the initial population was randomly created by means of using different seed numbers. In 

the ACORSES algorithm, required iteration number and colony size were selected according to the 

results of the sensitivity analysis with Wilson data. 

5. APPLICATION TO DATA SET GIVEN BY WILSON 

The parameter estimation technique for the nonlinear Muskingum model using ACORSES 

algorithm is applied to data set given by Wilson [1974], which has been studied by Mohan [1997], 

Kim et al. [2001], Das [2004], Geem [2006], Luo and Xie [2010] , Geem [2011], Barati [2011], Xu 

et al. [2012] and Karahan et al. [2013]. 

In order to determine the suitable maximum iteration number and colony size values, a 

sensitivity analysis was carried out thorough data set given by Wilson [1974]. Statistical evaluation 

of the parameters, SSQ’s, iteration number and CPU times for different colony sizes (CS) is 

presented in Table 1. The suitable CS value is selected as 10 for this problem in terms of requiring 

less CPU time. As can clearly be seen in Table 1, there is extremely small difference between the 

best solution and worst solution of 100 model runs. Standard deviation of SSQ’s of 100 runs is 

1.17E-13 for CS=10. Global optimum is always found for all CS values in the 100 model runs. The 

proposed algorithm is free from infeasible starting vectors and computational divergence. Required 

CPU time of the proposed algorithm for 2,000 iterations is 6.15 second.  

Table 2 presents the statistical evaluation of the parameters, SSQ’s and CPU times according to 

the different fixed iteration number. As can be seen in Table 2, there was not a significant change in 
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the results after 2,000 iterations. Thus, this fixed iteration value is appropriate for a stopping criteria 

in both applications. 

Table 3 shows the comparison of the best parameters and SSQ values for Wilson data obtained 

from various techniques such as genetic algorithm (GA), harmony search (HS), Broyden-Fletcher-

Goldfarb-Shanno (BFGS) technique, parameter-setting-free harmony search (PSFHS), differential 

evolution (DE), hybrid harmony search BFGS (HS-BFGS) algorithm and ACORSES algorithm. As 

can be given in Table 3, the best parameters (0.086249, 0.286917, 1.868087) and the corresponding 

SSQ value (36.767888) obtained by ACORSES algorithm is better than all techniques given in the 

literature. CPU time of the proposed algorithm for 2000 iteration is only 6.15 second.  

Computed outflows of Wilson data which were obtained by different methods are given in Table 

4. As can be seen in Table 4, computed outflows from ACORSES are better than the other methods 

except that HS-BFGS. ACORSES and HS-BFGS algorithms give same results. 

The comparison of the observed and computed hydrograph of Wilson data for the best solution 

vector is presented in Figure 2.  As can be seen in Figure 2, computed hydrograph is well suited to 

the observed hydrograph. 

 

Table 1: Statistical evaluation of the parameters, SSQ’s, iteration number and CPU times for different colony sizes CS 

values (2,000 iteration). 

CS 
Statistical 

Values 
K    m SSQ CPU 

10 

Best 0.086249 0.286917 1.868087 36.767888 6.15 

Worst 0.086249 0.286917 1.868087 36.767888 6.72 

Mean 0.086249 0.286917 1.868087 36.767888 6.34 

Std. Dev. 3.59E-09 1.65E-09 9.20E-09 1.17E-13 0.13 

20 

Best 0.086249 0.286917 1.868087 36.767888 10.84 

Worst 0.086249 0.286917 1.868087 36.767888 12.39 

Mean 0.086249 0.286917 1.868087 36.767888 11.77 

Std. Dev. 2.99E-09 1.31E-09 7.67E-09 9.42E-14 0.36 

30 

Best 0.086249 0.286917 1.868087 36.767888 17.00 

Worst 0.086249 0.286917 1.868087 36.767888 18.78 

Mean 0.086249 0.286917 1.868087 36.767888 17.85 

Std. Dev. 3.19E-09 1.48E-09 8.20E-09 1.09E-13 0.38 

40 

Best 0.086249 0.286917 1.868087 36.767888 23.03 

Worst 0.086249 0.286917 1.868087 36.767888 26.47 

Mean 0.086249 0.286917 1.868087 36.767888 24.25 

Std. Dev. 2.96E-09 1.27E-09 7.66E-09 9.63E-14 0.45 

50 

Best 0.086249 0.286917 1.868087 36.767888 29.81 

Worst 0.086249 0.286917 1.868087 36.767888 32.79 

Mean 0.086249 0.286917 1.868087 36.767888 30.53 

Std. Dev. 2.95E-09 1.44E-09 7.54E-09 9.94E-14 0.46 
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Table 2: Statistical evaluation of the parameters, SSQ’s and CPU times for different iteration number (CS=10). 

Iteration 

Number 

Statistical 

Values 
K   m SSQ CPU(s) 

1000 

Best 0.086210 0.286902 1.868027 36.767889 2.95 

Worst 0.086273 0.286928 1.868187 36.767894 4.01 

Mean 0.086249 0.286915 1.868087 36.767890 3.36 

Std. Dev. 1.22E-05 5.81E-06 3.15E-05 1.13E-06 0.23 

1500 

Best 0.086249 0.286916 1.868087 36.767888 4.60 

Worst 0.086249 0.286917 1.868088 36.767888 5.12 

Mean 0.086249 0.286917 1.868087 36.767888 4.75 

Std. Dev. 7.92E-08 3.85E-08 2.03E-07 4.92E-11 0.09 

2000 

Best 0.086249 0.286917 1.868087 36.767888 6.10 

Worst 0.086249 0.286917 1.868087 36.767888 7.33 

Mean 0.086249 0.286917 1.868087 36.767888 6.40 

Std. Dev. 3.45E-09 1.37E-09 8.90E-09 1.50E-13 0.18 

2500 

Best 0.086249 0.286917 1.868087 36.767888 7.68 

Worst 0.086249 0.286917 1.868087 36.767888 8.19 

Mean 0.086249 0.286917 1.868087 36.767888 7.85 

Std. Dev. 3.51E-09 1.58E-09 8.99E-09 1.02E-13 0.09 

3000 

Best 0.086249 0.286917 1.868087 36.767888 9.14 

Worst 0.086249 0.286917 1.868087 36.767888 10.48 

Mean 0.086249 0.286917 1.868087 36.767888 9.37 

Std. Dev. 3.50E-09 1.64E-09 8.96E-09 1.09E-13 0.18 

 

 

Table 3: Comparison of the best parameter and SSQ values obtained by diffferent methods for Wilson data. 

Method K   m SSQ 

GA 0.1033 0.2813 1.8282 38.2363 

HS 0.0883 0.2873 1.8630 36.7829 

BFGS 0.0863 0.2869 1.8679 36.7679 

PSF-HS 0.0864 0.2869 1.8677 36.7680 

DE 0.5175 0.2869 1.868 36.77 

HS-BFGS 0.086249 0.286917 1.868088 36.767888 

ACORSES 0.086249 0.286917 1.868088 36.767888 
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Table 4: Comparison of the observed and computed outflows for Wilson data. 

 

Time It Ot  Computed outflows (cms)  

(h) (cms) (cms)  GA    HS   BFGS  PSF -HS   DE HS-BFGS ACORSES 

0 22 22 22.0 22.0 22.0 22.0 22.0 22.0 22.0 

6 23 21 22.0 22.0 22.0 22.0 22.0 22.0 22.0 

12 35 21 22.4 22.4 22.4 22.4 22.4 22.4 22.4 

18 71 26 26.4 26.6 26.6 26.6 26.6 26.6 26.6 

24 103 34 34.2 34.4 34.5 34.5 34.5 34.5 34.5 

30 111 44 44.2 44.1 44.2 44.2 44.2 44.2 44.2 

36 109 55 57.0 56.8 56.9 56.9 56.9 56.9 56.9 

42 100 66 68.2 68.1 68.1 68.1 68.1 68.1 68.1 

48 86 75 77.2 77.1 77.1 77.1 77.1 77.1 77.1 

54 71 82 83.3 83.3 83.3 83.3 83.3 83.3 83.3 

60 59 85 85.7 85.9 85.9 85.9 85.9 85.9 85.9 

66 47 84 84.2 84.5 84.5 84.5 84.5 84.5 84.5 

72 39 80 80.2 80.6 80.6 80.6 80.6 80.6 80.6 

78 32 73 73.3 73.7 73.7 73.7 73.7 73.7 73.7 

84 28 64 65.1 65.4 65.4 65.4 65.4 65.4 65.4 

90 24 54 55.8 56.0 56.0 56.0 56.0 56.0 56.0 

96 22 44 46.7 46.7 46.7 46.7 46.7 46.6 46.6 

102 21 36 38.0 37.8 37.7 37.8 37.8 37.7 37.7 

108 20 30 30.9 30.5 30.5 30.5 30.5 30.4 30.4 

114 19 25 25.7 25.3 25.2 25.2 25.2 25.2 25.2 

120 19 22 22.2 21.8 21.7 21.7 21.7 21.7 21.7 

126 18 19 20.3 20.0 20.0 20.0 20.0 20.0 20.0 

 

 

 

 

Figure 2: Comparison of the observed and computed hydrograph of Wilson data for the best solution vector. 
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6. APPLICATION TO RIVER WYE DECEMBER 1960 FLOOD 

An example of the 1960 flood in the River Wye in the UK is presented here [NERC, 1975]. The 

69.75 km stretch of the River Wye from Erwood to Belmont has no tributaries and very small 

lateral inflow. It is, thus, an excellent example to demonstrate the use of flood routing techniques 

[Bajracharya and Barry, 1997].  

Computed outflows of River Wye December 1960 Flood which were obtained by a  three-

parameter linear Muskingum model considering lateral flow (LMM-L)  [O’Donnell, 1985] and 

ACORSES methods are given in Table 5. As can be seen in Table 5, computed outflows from 

ACORSES are better than the LMM-L method. The comparison of the observed and computed 

hydrograph of these two methods is presented in Figure 3.  As can be seen in Figure 3, computed 

hydrograph obtained by ACORSES is well suited to the observed hydrograph.  

The best parameters (0.079235, 0.409238, 1.581483) and the corresponding SSQ value 

(37944.14) obtained by ACORSES algorithm is better than LMM-L method. CPU time of the 

proposed algorithm for 2000 iteration is only 8.16 second. The SSQ value of LMM-L method is 

computed as 251802 for the given parameters. ACORSES and HS-BFGS algorithms give same 

results for both examples. It can be said that HS-BFGS is faster than ACORSES for obtaining 

global optimum. But, HS-BFGS needs a good knowledge of gradient-based computations.  

 

Table 5: Comparison of the observed and computed outflows for River Wye December 1960 flood. 

Time It Ot  Computed outflows (cms) 

 (h) (cms) (cms) LMM-L HS-BFGS ACORSES 

0 154 102 102 154 154 

6 150 140 116 154 154 

12 219 169 120 152 152 

18 182 190 147 181 181 

24 182 209 158 191 191 

30 192 218 165 185 185 

36 165 210 176 187 187 

42 150 194 178 179 179 

48 128 172 176 162 162 

54 168 149 164 141 141 

60 260 136 160 154 154 

66 471 228 167 198 198 

72 717 303 218 264 264 

78 1092 366 303 344 344 

84 1145 456 484 416 416 

90 600 615 690 599 599 

96 365 830 700 871 871 

102 277 969 642 834 834 

108 227 665 572 689 689 

114 187 519 505 535 535 

120 161 444 442 397 397 

126 143 321 386 283 283 

132 126 208 338 202 202 

138 115 176 296 152 152 

144 102 148 260 124 124 

150 93 125 228 106 106 
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Table 5: Comparison of the observed and computed outflows for River Wye December 1960 flood (continued). 

Time It Ot  Computed outflows (cms) 

 (h) (cms) (cms) LMM-L HS-BFGS ACORSES 

156 88 114 201 94 94 

162 82 106 179 88 88 

168 76 97 160 82 82 

174 73 89 144 75 75 

180 70 81 130 73 73 

186 67 76 118 69 69 

192 63 71 109 66 66 

198 59 66 100 62 62 

 

 

Figure 3: Comparison to observed and computed hydrograph of River Wye December 1960 Flood data. 

7. CONCLUSIONS 

This study proposes an ant colony algorithm for a nonlinear Muskingum flood routing model. 

The proposed algorithm overcame the disadvantages of mathematical techniques (initial vector 

setting, local optima and diverging). In each different model run, true global optimum is always 

obtained. In the proposed method, non-negativity restrictions are imposed on the model with an 

effective indirect penalty approach. ACORSES algorithm found the best solution among different 

methods given in the literature. The proposed algorithm is very robust. The results obtained 

demonstrate that the ACORSES algorithm can confidently be applied to estimate optimal parameter 

values of the nonlinear Muskingum model.  
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