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INVERSE MODEL TO ESTIMATE O-D MATRIX FROM LINK TRAFFIC
COUNTS USING ANT COLONY OPTIMIZATION

Halim CEYLAN® Soner HALDENBILEN?  Huseyin CEYLAN®  Ozgur BASKAN*

Abstract- Estimation of Origin-Destination (O-D) trip table has long been carried out with maximum entropy,
generalized least squares, bi-level programming methods etc. All optimization models developed so far are either
calculus based and mathematically lengthy. All approaches are prone to local optima. Therefore, there is a need
for a new method which estimates O-D trip table and solves the traffic assignment models simultaneously. The
main objective of this study is therefore to develop a model to estimate O-D trip table from link traffic counts
using ant colony optimization (ACO) method based on inverse modelling technique. The ACO has been recently
developed, as a population based meta-heuristic that has been successfully applied to several NP-hard
combinatorial optimization problems. The core of ant’s behavior is the communication between the ants by means
of chemical pheromone trails, which enables them to find shortest paths between their nest and food sources. Ant
Colony optimization O-D Estimation (ACODE) model is formulated as simultaneous optimization problem, the O-
D trip matrices and stochastic user equilibrium (SUE) path and link flows are obtained simultaneously. The
ACODE model is applied to an example transportation network which has 13 nodes with 19 links, 25 routes and 4
O-D pairs. O-D trip table is estimated using proposed ACODE model from given link traffic volumes. Results
showed that inversely applied ACODE model for O-D matrix estimation from link traffic counts may estimate the
O-D trips under SUE assumption.
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INTRODUCTION

The Origin-Destination (O-D) trip table estimation is an essential element of network based traffic models.
Estimating O-D matrix from traffic counts on road links is of considerable importance. The O-D is also an
essential ingredient in a wide variety of travel analysis and planning studies [1]. Over the past several decades, a
considerable number of methods for O-D estimation have been reported in the literature. O-D matrix is the basic
data for the traffic planning and management. It is a demand for traffic that flows from origins to destinations,
which is expressed as a matrix to explore the movement of space flow. Statistical techniques have become popular
in the estimation or updating of O-D matrix from traffic counts. The traditional way of estimating O-D from
home-interview survey data is expensive [2]. Hence, generally, the estimates are based on small sample of home-
interview data and thus the accuracy of the estimates suffers. This led the researchers to estimate the O-D from a
variety of other data sources among which O-D estimation from link traffic counts has attracted lot of interest as
the required data collection is simple and routine. The O-D demand matrix estimation methods in the literature
and its advantages and disadvantages are given in the next section.

This paper is structured as follows. The next section reviews the O-D estimation matrix estimation methods.
An improved ant colony optimization method and its solution procedure are proposed in Section 3. The algorithm
defined to estimate the O-D matrix using improved ant colony optimization with inverse model from the link
traffic counts is given in Section 4. In Section 5, a numerical example is carried out to present effectiveness for
proposed algorithm. Finally, our conclusions can be seen in the last section.

! Halim Ceylan, Department of Civil Engineering, Engineering Faculty, Pamukkale University, Denizli, 20017, Turkey,
halimc@pamukkale.edu.tr

2 Soner Haldenbilen, Department of Civil Engineering, Engineering Faculty, Pamukkale University, Denizli, 20017, Turkey,
shaldenbilen@pamukkale.edu.tr

® Hiseyin Ceylan, Department of Civil Engineering, Engineering Faculty, Pamukkale University, Denizli, 20017, Turkey,
hceylan@pamukkale.edu.tr

* QOggir Bagkan, Department of Civil Engineering, Engineering Faculty, Pamukkale University, Denizli, 20017, Turkey,
obaskan@pamukkale.edu.tr

241



Research in Transport and Logistics 2009 Proceedings Dogus University

LITERATURE REVIEW

O-D matrix estimation has been studied by a few researchers and notable developments have been achieved at
this concept of transportation network design. Reference [3]-[5] were interested in finding probable O-D
movements in terms of link flows by deterministic assignment equation. Reference [6] was the first to attempt the
equilibrium assignment based O-D estimation. The formulation, however, does not ensure a unique O-D solution
because the formulation is not strictly convex in the O-D variables. Uniqueness of the solution is ensured if a
target O-D is used [7]-[9]. These models require a complete set of link counts, a target O-D matrix and that the
observed flows be in equilibrium.

Two significant methods which do not use entropy formulation and include generalized least squares
estimation were developed by [10] and [11]. Reference [2] developed another method which also uses generalized
least squares and also allows the explicit use of data describing the structure of the O-D. Reference [12] proposes
a model which inferences about an O-D matrix from a single observation on a set of link flows. Two problems are
discussed in this study; the first, the problem of reconstructing the actual number of O-D trips, and the second,
estimation of mean O-D trip rates. A fast constrained recursive identification (CRI) algorithm is proposed to
estimate O-D matrices by [13]. The basic idea of the CRI algorithm is to estimate intersection O-D matrices based
on equality-constrained optimization. A Fuzzy inference based assignment algorithm to estimate O-D matrices
from link volume counts is proposed by [1].

Reference [14] proposes a new model which has been formulated by using a new approach called the
calibration and demand adjustment model (CDAM) based on bi-level programming which simultaneously
estimates an O-D matrix and the parameters for the nested logit model. The algorithm iterates between the
network equilibrium problem and that which is used to obtain a set of paths when equilibrium is attained, and the
CDAM s restricted to the set of previously generated columns. The computational tests on the algorithm have
been carried out using data from a multi-modal network in Madrid.

In this study, an improved ant colony optimization (IACQO) based algorithm which is called ACODE is
proposed to estimate O-D demands on transportation networks. The ACODE model considers Stochastic User
Equilibrium (SUE) conditions for modeling drivers’ route choice perceptions. The methodology is given in the
next sections and the model is applied to a test network.

ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) belongs to the class of biologically inspired heuristics. The ACO is the one of
the most recent techniques for approximate optimization methods, was initiated by [15]. The core of ant’s
behavior is the communication between the ants by means of chemical pheromone trails, which enables them to
find shortest paths between their nest and food sources. The Improved algorithm for ACO (IACO) that is
proposed in this study is based on each ant searches only around the best solution of the previous iteration with
coefficient g. It is very important for improving IACQO’s solution performance. IACO differs from other ACOs in
that its feasible search space (FSS) is reduced with coefficient £ and its best solution obtained using information
on the previous iteration. At the core of IACO, ants search randomly the solution within the FSS to reach
optimum or near-optimum values. At the end of the each iteration, only one of the ants is near to global minimum.
After the first iteration, when global minimum is searched around the best solution of the previous iteration using
p, the IACO will quickly reach to the global minimum. IACO is performed by modifying the algorithm proposed
by [16]. The algorithm can be defined in the following way.

At the beginning of the first iteration, all ants search randomly best solution of the problem within the FSS. At
the end of the first iteration, FSS is reduced by g and best solution obtained of the previous iteration is kept.
Optimum solution is then searched in the reduced search space during the steps of algorithm progress. IACO
reaches to the global minimum as ants find their routes in the limited space. § guides the bounds of search space
throughout the IACO application. The main idea of proposed algorithm is given in Figure 1. Main advantageous
of IACO is that the FSS is reduced with coefficient g and it uses the information taken from previous iteration.
For example, consider a problem of five ants represents the formulation of the problem. Five ants being associated
five random initial vectors. Only one of the solutions which were obtained at the end of the first iteration is near to
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global minimum. After the first iteration, FSS is reduced according to coefficient £ and best solution (Ant 1 is the
best solution, as shown in Fig. 1(a)) of the previous iteration. FSS is getting smaller during iteration progress as
shown in Fig. 1(b). Coefficient g has been chosen according to the size of search space and constraints the
problem in order not being trapped in bad local minimum. In IACO, let number of m ants being associated with m

random initial vectors(x* (k =1,2,3,.....m)). Quantity of pheromone (z,)only intensifies around the best
objective function value. The solution vector of the each ant is updated using (1).

XK — k(o) 4 o (t=12,...,1) 1)

@

Global
minimum

W\ FSS (Ant 1-Rt)<FSS<(Ant 1+Rt)

© (d)

4 o
Ant 4 -+
o Ant1 ANtS

(Ant 2-Be1 )<FSS<(Ant 2+B+1) (Ant 3-Ru2 )<FSS<(Ant 3+R:2)

FIGURE 1
Main idea of IACO model (FSS is getting smaller during the optimization process using previous information and
coefficient f)

where x;"™" is the solution vector of the k™ ant at iteration t (see Figure 2), x\°is the solution obtained from
the previous step at iteration t, and « is a vector generated randomly to determine the length of jump.

Ant vector xtk(”ew) obtained at t" iteration in (1) is determined using the value of same ant obtained from
previous step. At the last step of the each iteration, a new ant colony (see Figure 2, second loop) is developed as
the number of colony size that is generated at the beginning of the each iteration. Steps of algorithm are illustrated

in Figure 2. Quantity of pheromone (z,)is reduced to simulate the evaporation process of real ant colonies using

(2). After reducing the number of pheromone, it is updated using (3). This process is repeated until the given
number of iteration, I, is completed.

7. =01%7_, @
7, =7, +0.01* f(x_,”") ?)
In Equation (1), (+) sign is used when point th is on the left of global minimum on the x coordinate axis. (-)

sign is used when point th is on the right of global minimum on the same axis. The direction of movement is
defined by (4).
thest — thest + (thest *001) (4)
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If £ (X,™) < f(x"™), (+) sign is used in (1). Otherwise, (-) sign is used. (%) sign defines the search direction

of movement to reach to the global minimum. « value is used to define the length of jump, and it will be gradually
decreased in order not to pass over global minimum, as shown in Figure 2.

Initialization

FORi=1TOI (I=iteration number)
IF I=1 THEN generate m random ants within FSS
ELSE reduce FSS with range [ X, ;"™ + ;X" — ]
END IF
FORi=1TOm

Determine f (x,™)

{old ant colony}

best
Save X,

END
Pheromone update

Pheromone evaporation using (2)
Update pheromone trail using (3)
Solution phase

Determine search direction using (4)
Generate the values of o vector
FORi=1TO m

Determine the members of new colony using (1) {new ant colony}

Determine new f (x™")

best
Save X,

END
IF f(thest)new < f(thest)old THEN Xglobal min _ (thest)new
ELSE xdlobalmin _ (thest)om
END IF
a, =a,_,*0.99

B = f.,*0.99
END

FIGURE 2
Steps of IACO
The IACO is performed by means of reduced search space with £ and using the information provided by
previous solution. Moreover, IACO differs in terms of the generated new colony. Means that at the last step of the
each iteration, a new colony is developed as a number of colony size, that is generated at the beginning of each
iteration and the length of jump is applied to the same ant of the previous step at the iteration t to generate a new
colony instead of applying the best ant, which obtained from previous iteration.

PROPOSED O-D MATRIX ESTIMATION TECHNIQUE

ACODE is SUE based method that considers perceived route travel times of drivers by using C-Logit route
choice model [17]. SUE assignment can be expressed as a fixed-point problem in the link flow space, over the
non-empty, compact and convex set of feasible link flow patterns by following the works by [18]-[19]. The fixed
problem can be written as
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Va= D D audipl () acL (5)

weW reR,,

where v, is the link traffic volume on link a, ae L, g, is the travel demand between the O-D pair weW , 5;
is the link-path incidence matrix where &3 =1 if route r between O-D pair w uses link a and 0 otherwise, p;'(t")

is the probability of drivers choosing route r € R and t" is a vector of travel times of all routes between the O-D
pair w.

C-Logit model is adopted for the numerical calculation section of this study since application is quite easy. The
probability of choosing route r may be expressed with C-Logit model is given in (6).

(1) - exp(-Gty’ ~ GCRY)

> exp(-opty’ - 491CFkW)
KeR,

reR,,wewW (6)

where CF" is the commonality factor for route r e R, and it represents the degree of similarity of route r
with the other routes in the set of R, between the O-D pair weW and @, — 6, are the parameter of the Gumble
random variable, directly proportional to the standard error of perceived path costs. Several ways are suggested to
specify the commonality factor that gives similar results with each other by Cascetta et al. (1996). The
commonality factor used in this study is given in (7) as

CRY=> syway InNy' reR, weW @)

acA

where N’ is the number of routes, connecting O-D pair weW that share link a and w; is the proportional

weight of link a for route r € R,,, specified as the fraction of total route travel time which is attributed to link a:
oot ®)

ar — tl\.N
where t, is the link travel time and t," is the corresponding route travel time.

SUE assignment part ends after finding route choice probabilities and new link flows (v,) can be obtained by
using (5) with respect to randomly generated O-D trips. Minimization of the following objective function provides
requested O-D demands.

- * * 2
min F(va,va):Z(va—va) 9)
aelL
where, v, is observed and v, is obtained link flows from estimated O-D movements. A flowchart for the
ACODE model is given in Figure 3.

APPLICATION OF PROPOSED METHOD TO ESTIMATE O-D TRIP TABLE

Let us now consider the application of the method described in the previous section. By way of illustration,
consider the figure of network given in Figure 4, where the equilibrium path flows are generated randomly. This
network is also studied by [20] in order to estimate origin destination matrices in congested traffic networks using
column generation algorithm.
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Initializing the network, flow and IACO

parameters

e Link capacities and free flow travel Link travel times
times ® (BPR cost function)

o Link flows

e Colony size and v

Route choice probabilities
(C-Logit model)

A 4

Randomly generated O-D
demands with IACO

\ 4

.| Calculating route flows using
route choice probabilities

A 4

Calculating link flows
(link/path incidence matrix)

Generating new O-D
demands with IACO

A

\ 4

Obijective function evaluation
(Equation (9))

A 4

No| Termination criteria satisfied?
(max. number of iterations, N)

Yes

A 4

STOP
(O-D Demands)

FIGURE 3
The solution algorithm of ACODE model

The standard Bureau of Public Roads (BPR) function which is given in (10) adopted with b,=1 ve n,=2,
Va e L inorder to find link costs. The other parameters of the BPR function are given in Table 2.

T,(V,)= t2[1+ 3 (\é—ara} (10
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Origin

3 19 3
Destination
FIGURE 4
Test network ([21])

Dogus University

Destination

As shown in Figure 4, test network has 13 nodes with 19 links and 25 routes between 4 O-D pairs which are

givenin Table 1.

TABLE 1
Test network topology and equilibrium path flows
O-D O-D p Link Path O-D O-D Link Path
: ath - Path
movement  pair sequence flows | movement pair sequence flows
1 2-18-11 276 14 1-6-13-19 230
2 1-5-7-9-11 112 15 1-5-7-10-16 107
3 1-5-7-10-15 83 3 (1.3) 16  1-5-8-14-16 90
1 (1.2) 4 1-5-8-14-15 76 ’ 17 1-6-12-14-16 105
’ 5 1-6-12-14-15 98 18  2-17-7-10-16 146
6 2-17-7-9-11 145 19  2-17-8-14-16 123
7 2-17-7-10-15 113 20  4-13-19 295
8 2-17-8-14-15 98 21 4-12-14-16 157
9  4-12-14-15 386 22 3-6-13-19 201
10 3-5-7-9-11 378 4 4,3) 23 3-5-7-10-16 133
2 4,2) 11 3-5-7-10-15 261 24  3-5-8-14-16 105
12 3-5-8-14-15 222 25  3-6-12-14-16 109
13 3-6-12-14-15 254
TABLE 2
Link cost parameters
Link Free flow travel time, tg Link capacity, C,
1,2,3,5,6,7,
8,9, 10,11, 12, 10 2000
14, 15, 16, 17, 19
4 20 2000
13 20 2000
18 30 2000
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In order to show the effectiveness of the ACODE, the evaluation of objective function during the iteration
process is given in Figure 5. As can be seen in Figure, ACODE achieved to exact solution for given objective
function about after 500 iterations.

2000000
1800000
1600000
1400000
1200000
1000000 -#tf
800000
600000
400000
200000

0

The value of OF

— - — — — -
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FIGURE 5
The evaluation of objective function (OF)

0O-D demand matrix is obtained using ACODE model after 1000 iterations and given in Table 3.

TABLE 3
Obtained O-D trip table using ACODE model
Origin Destination
2 3
1 1000 800
4 1500 1000

CONCLUSIONS

This paper deals with the development of a new algorithm to estimate O—D matrices from observed link traffic
counts. A new approach called ACODE has been formulated based on SUE conditions. We have proved the
existence of solutions for ACODE. Test network which has 13 nodes, 19 links, 25 routes and 4 O-D pairs is used
to show the effectiveness of ACODE algorithm. Numerical results showed that the proposed ACODE algorithm is
able to estimate O-D trip table from link traffic counts. Further, the results show that the proposed approach holds
promise for successful application to large networks with complex flow patterns.
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