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Ozet

Karinca Kolonisi Optimizasyonu (KKO) 1990’11
yillarin baginda uygulama alani bulan meta-
sezgisel bir metottur. Bu ¢alismada KKO tabanl
sezgisel bir metot gelistirilmis ve algoritma
Microsoft Excel programi altinda Visual Basic

(VBA) diliyle  kodlanmistir.  Gelistirilen
algoritma, global minimum ve optimumun
bulunmasi  igin literatiirdeki  bircok  test

fonksiyonu tizerinde denenmis ve literatiirdeki
diger caligmalarla karsilastirilmistir. Sonug olarak
gelistirilen KKO tabanli sezgisel optimizasyon
metodu ile oldukga basarili sonuglar alinmistr.

1. Giris
Karinca  Kolonisi ~ Optimizasyonu  (KKO)
algoritmalari,  optimizasyon  problemlerinin

¢Oziimii igin gergek karinca kolonilerinin hareket
davraniglarinin -~ gozlemlenmesi  ile  ortaya
atilmigtir. Karinca kolonileri yuva ve yiyecek
kaynagi arasinda her zaman en kisa yolu
bulabilmektedirler. Karinca kolonilerinin yiyecek
ve yuva arasinda sergilemis oldugu bu ¢dziim
slirecinin optimizasyon problemlerinin
¢oziimiinde kullanilabilecegi ilk defa 1992 yilinda
ortaya atilmistir [1]. KKO yontemi son
zamanlarda literatiirde bir¢ok optimizasyon
probleminin ¢oziimii i¢in kullanilmaktadir [2-3].
F(x) fonksiyonu g6z oniine alindiginda biitiin X
degerleri igin eger F(Xmin) < F(X) ise bu durumda
Xmin Noktast fonksiyonun minimum noktasi olur.
Tanimlanan fonksiyon bircok yerel minimuma
sahip olabilecegi gibi fonksiyonun global
minimum noktasi bunlardan bir tanesidir. Global
minimumun bulunmasinda stokastik metotlarin
birgok avantaji vardir. Konveks ya da siirekli
olmayan yapidaki fonksiyonlarin global minimum
noktalarinin bulunabilmesi i¢in simdiye kadar
birgok sezgisel metot gelistirilmistir [4-5-6]. Bu
caligmada oOnerilen KKO tabanli sezgisel metot
her bir iterasyonda ¢6ziim uzayinin en iyi ¢ozimi
veren parametreler etrafinda belli  kisitlar
icerisinde yeniden olusturulmas1 ve sonraki
iterasyonlara buna bagli olarak devam edilmesi
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prensibine  dayanmaktadir. Bildirinin 2.
boliimiinde KKO ve dnerilen algoritma hakkinda
kisa bir bilgi, 3. bolimde algoritmanin test
fonksiyonlar1 {izerindeki performansi ardindan
sonuglar ve oneriler verilmistir.

2. Karinca Kolonisi Optimizasyonu

KKO son zamanlarda ¢6ziimii zor optimizasyon
problemlerinin ¢Oziimiinde kullanilan
metasezgisel bir yaklasimdir [7]. ilk ¢alismalarda
KKO algoritmasi karmca sistemi olarak onerilmis
ve gezgin satict problemi {izerine uygulanmistir.
KKO algoritmalari, optimizasyon problemlerinin
¢Oziimii igin gergek karincalarin yiyecek bulma
davramiglarinin gézlemlenmesi ile ortaya ¢ikmistir
[8]. Sekil 1'de goriildiigii gibi gercek karincalar
yiyecege giden yollari iizerine bir engel koyuldugu
zaman iki yoldan bir tanesini tercih edeceklerdir.
Sekil 1(a)'da gosterildigi AE yolu {izerindeki
karinca kolonisi yolu iizerinde Sekil 1(b)'deki gibi
bir engel oldugu zaman karincalar engel etrafindan
donebilmek icin HB ve BC yollarindan bir
tanesini tercih edeceklerdir.
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(c)
Sekil 1. Gergek karinca davranislari

Teknigin en temel unsurlarindan biri haberlesme
araci olarak kullanilan ve problemlerde ¢dziimiin
kalitesini gosteren gergek karincalarin gegtikleri
yollara biraktiklar1 feromen kimyasalidir. Feromen
kimyasali karincalar tarafindan giincellenmekte ve
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bir bilgiyi temsil etmektedirler. Bir yolda feromen
izinin yogun olmasi o yolun tercih edilme
olasiligmm1 artirir. Karinca kolonisi ilk olarak
deterministik diisiinceye gore esit olasilikta se¢im
yapacak -stokastik diigiinceye gére mutlaka bir yol
digerinden daha tercih edilebilir durumdadir- ve
kisa olan yolu tercih eden karincalar yiyecege
ulasip daha kisa zamanda yuvalarina geri
doneceklerdir. Bu siire¢ sirasinda karincalar
gectikleri  yerlere feromen denen kimyasal
maddeyi birakacaklar ve kisa olan yolda az bir
zaman sonra daha fazla feromen birikmeye
baglayacaktir (Sekil 1.c). Karincalar bir sonraki
turlarinda artik feromenin fazla oldugu kisa olan
yolu tercih etmeye baslayacaklar ve bir siire sonra
karmca kolonisinin tamamu yiyecege ulagmak icin
kisa olan yolu tercih edecektir. Karincalarin bu
davranis kaliplarmin incelenmesi ile bu sistemin
ozellikle en kisa yol problemleri olmak {izere pek
¢ok optimizasyon problemlerinde kullanilabilecegi
ortaya atilmstir [1],[9].

2.1. KKO tabanh Meta-Sezgisel Algoritma

Onerilen algoritmada k adet karinca ¢dziim uzayi
icinden rastgele olarak segilen k adet vektor olarak
nitelendirilmistir. Algoritmada her bir iterasyon
sonunda elde edilen en iyi fonksiyon degerini
veren parametreler etrafinda feromen
giincellenmesi Denklem (1) yardimiyla yapilir.

7, =7, +(0.01* f (Xtefliyi ) @
Burada 7, feromen miktar1 olup ger¢ek karinca

davraniglarindaki iyi ¢oziimii temsil edebilmek
icin bir Onceki iterasyondaki en iyi parametreler
etrafinda yogunlastirilir. Ayrica karincalarin her
bir iterasyonda hareket yOniinii tayin edebilmesi
i¢in Denklem (2) kullanilir.

eniyi

k
X, =X, fa

)
Burada th t. iterasyondaki yeni liretilen karinca

vektord, Xt_len " bir nceki iterasyondaki en iyi

karinca vektorii, a ise baslangi¢c olarak rastgele
secilen sicrama uzunlugudur. Rastgele secilen
sigrama uzunlugunu, iterasyonlar boyunca global
minimum noktasini gegmemesi igin her bir
iterasyonda belli bir miktarda azaltilir (Sekil 2).
Denklem (2)’de (£) isaretinden hangisinin
kullanilacagi yani hareket yonii ara f(X) degerini
veren yeni karinca vektoriiniin Denklem (3)
yardimiyla hesaplanmasiyla belirlenir.

eniyi _ Xbayemyl n (Xbmenlyl *001)

X, @)

as

Eger f()_(basemyi) < f(Xbasemyi) ise  Denklem

(2)’de (+) isareti tersi durumda ise (—) isareti
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kullanilir. Onerilen algoritmada ayrica gergek
karinca davraniglarindaki feromen buharlagmasini
temsil eden yaklasim kullanilmasina gerek
duyulmadan olduk¢a 1iyi sonuglar alimistir.
Algoritmada ilk olarak rastgele segilen karinca
kolonisini temsil eden vektorler, sonraki
iterasyonda en iyi ¢Oziim degerini veren
parametrelere ve f ile belirtilen katsayi ile
baglantili olarak sinirlanir. f degeri algoritmanin
performansinda oldukg¢a etkili olup, fonksiyon
tipine ve ¢6ziim uzaymin bityiikliigiine gore farkli
degerleri alabilmektedir. 1lk olarak ¢oziim
uzaymin biiyiikligiyle orantili olarak segilen S
degeri sonraki iterasyonlarda belli bir degerde
azaltilmakta ve iterasyon siireci boyunca ¢éziim
uzaymin  smirlandirilmast  ve  yakinsama
yeteneginin bdylece artirilmasi saglanmaktadir.
Sekil 2’de Onerilen algoritmanin adimlari
goriilmektedir.

Baslangi¢
FORi=1tol (I=iterasyon sayisi)
Rastgele baslangi¢ degerlerini iiret
IF I=2 THEN baslangi¢ degerlerini

sinirla (Xt_leniyi + ﬂ; Xt_leniyi — ﬂ)
Eniyi f(X) degerini hesapla
Eniyi f (X) degerini veren x degerini sakli tut
Feromen Giincellenmesi
Denklem(1) ile feromen giincellenmesi
Coziim Evresi
Denklem(2) ile hareket yoniiniin belirlenmesi
FORi=1tok
O vektoriiniin tiretilmesi

Her bir karinca icin yeni X degerlerini
hesapla

Yeni f(X) degerini hesapla

IF f(x™) < f(x ™) THEN
lobalmin __ , eniyi

X 9OPEM = ELSE

eniyi

lobalmi
Xgo almin _ thl
END
B = *0.99
a, =a,,*0.99

END
Sekil 2: KKO tabanli sezgisel algoritma



Bu boliimde KKO tabanli sezgisel algoritma
hakkinda bilgi verilmis ve algoritma adimlar1
aciklanmustir.  Uglincii  boliimde  6nerilen
algoritmanin  test fonksiyonlar1  iizerindeki
performansi ve karsilagtirmalar verilecektir.

3. Test Fonksiyonlari

KKO tabanli sezgisel algoritma 5 farkli test
fonksiyonu {izerinde uygulanmis ve algoritmanin
performansi karsilastirmali olarak verilmistir.
Koloni biiytkligi biitiin problemler igin k=20
secilmistir.

3.1. Test Problem 1

Iki degiskenli test fonksiyonu Denklem 4’de
verilmistir.

f(xy)=@00*(x-y*)*)+(A-x)* (@

Fonksiyonun minimum noktasi x=1 ve y=1 ig¢in
f(x,y)=0 olmaktadir. Bagslangi¢ degerleri f=2,

o=l/rastgele(10)  seklindedir.  Sekil  3’de
fonksiyonun ama¢ fonksiyonunun degisimi
goriilmektedir.

f(xy)

Sekil 3: Test problem 1 amag fonksiyonu degisimi

Tablo 1’de KKO tabanli sezgisel algoritma ile
alinan sonuglar ve kargilagtirmalar verilmistir.

Tablo 1: Test problem 1 i¢in 6nerilen algoritma
ile diger yontemlerin karsilagtirilmasi

3.2. Test Problem 2

Problem 2 olarak segilen fonksiyon 2 degiskenli
olup fonksiyonun minimum noktast [-10,10]
araliginda x= -10 ve y=0 ve f(x,y)= -10 olarak
tanimlanmistir. Tanimlanan fonksiyon Denklem
(5)’de verilmistir. Amag fonksiyonunun degisimi
Sekil 4’de goriilmektedir.

Fy) =

(®)
1+|y|
Algoritma  i¢in  baglangic  degerleri =5,
o=1/rastgele(10) seklindedir. Tablo 2’de ¢bziim
sonuglari ve kargilagtirmalar verilmistir.

Sekil 4: Test problem 2 amag fonksiyonu degisimi

Tablo 2: Test problem 2 i¢in 6nerilen algoritma
ile diger yontemlerin karsilastirilmasi

Algoritma X y f(x,y) | iterasyon
sayis1
[4] -10 6.67E-008 -10 50000
[5] -10 8.07E-011 -10 50000
6] -10 0 -10 3750
KKO
tabanh -10 0 -10 2787
algoritma

Algoritma x|y f(x,y) iterasyon
sayisi
[4] 1|1]| 4.02E-016 50000
[5] 111 0 50000
[6] 1|1 0 3600
KKO tfabanl] 111 0 3418
algoritma

3.3. Test Problem 3

Kargilastirma problemi olarak segilen bir diger
fonksiyon Denklem(6)’da verilmistir. Fonksiyon
tek degiskenli olup x=0 noktasinda f(x)=0 degerini
almaktadir. Algoritma igin baslangic degerleri
p=2, o=l/rastgele(6) seklindedir. Tablo 3’de
¢0zlim sonuclari ve karsilastirmalar verilmistir.




f(x) ={x*sin(i)} J{x*cos(%)} (6)

Tablo 3: Test problem 3 i¢in 6nerilen algoritma
ile diger yontemlerin karsilastiriimast

Tablo 4: Test problem 4 igin 6nerilen algoritma

ile diger yontemlerin karsilastiriimasi

Algoritma X y f(x,y) iterasyon
sayisi
6] 0 0 0 3750
[10] 2.98E-08 4000
KKO
tabanh 0 0 0 1832
algoritma

Algoritma X f(x) iterasyon
sayisi

[4 -2.53E-011 2.21E-043 50000
[5] 7.79E-012 1.40E-045 50000
[6] 9.92E-012 5.60E-045 5000
KKO

tabanh -6.16E-020 9.02E-078 4198

algoritma

Sekil 5’de test problem 3 olarak verilen
denklemin ama¢  fonksiyonunun  degisimi
goriilmektedir.

06

o o1 02 03 04 05 06 07 08 09 1

Sekil 5: Test problem 3 amag fonksiyonu degisimi
3.4. Test Problem 4

Onerilen KKO tabanl algoritma igin segilen 4.
test problemi Denklem (7)’de verilmistir.
Fonksiyon 2 degiskenli olup minimum noktasi
x=0 ve y=0 noktasinda f(x,y)=0 olmaktadir.
Algoritma  i¢in  baslangic  degerleri =4,
o=1/rastgele(6) seklindedir.

x® +2y? —0.3cos(37x) — 0.4cos(4ny) +0.7  (7)

Tablo 4’de ¢bziim sonuglar1 ve karsilastirmalar,
Sekil 6’da ise amag¢ fonksiyonunun degisimi
gosterilmistir.

Sekil 6: Test problem 4 amag fonksiyonu degigimi
3.5. Test Problem 5

Karsilastirma problemi olarak son test fonksiyonu
Denklem (8)’de verilmistir. Schwefel test
fonksiyonu olarak literatirde bilinen fonksiyon
birgok yerel minimuma sahip olmasi agisindan
global minimum noktasinin bulunmasi oldukga
zor olan bir fonksiyondur. Onerilen algoritma ile
bu fonksiyon iginde kesin sonu¢ alinmustir.
Fonksiyonun -500 < x; < 500 araliginda minimum
noktast min f(x) =—n*418.9829 olup bu

degeri veren deger X, =420.9687 olarak

literatiirde verilmistir [7].

f(x):zn:—xi *sin\/m (8)
i=1

Tablo 5°de test problem 5 i¢in ¢6zlim sonuglart ve
Sekil 7°de ise amag¢ fonksiyonunun degisimi
verilmistir. Algoritma i¢in baslangic degerleri
p=250, o=1/rastgele(10) seklindedir. n=2 degeri
icin ¢dziim yapilmistir.



Tablo 5: Test problem 5 KKO tabanli algoritma

sonuglari
Algoritma Xi f(x) iterasyon
sayis1
KKO
tabanh 420.9687 -837.9658 1176
algoritma

>§°

&
Sekil 7: Test problem 5 amag fonksiyonu degisimi

4. Sonuclar ve Oneriler

Bu c¢aligmada global minimum ve optimumun
bulunabilmesi i¢in KKO tabanli meta sezgisel bir
metot Onerilmistir. Algoritma Microsoft Excel
programi altinda VBA kodu ile yazilmistir.
Gelistirilen algoritma 5 farkli test fonksiyonu
lizerinde test edilmis ve Dbasarili sonuglar
almmugtir. Daha sonraki ¢aligmalarda KKO
tabanli algoritmanin diger sezgisel metotlarla
birlestirilerek daha hizlt algoritmalarin
iretilmesine  ¢alisilacak ve ayrica koloni
biyikliiginin ve algoritma parametrelerinin
Onerilen algoritma iizerindeki performansinin test
edilmesine yonelik ¢aligmalar yapilacaktir.
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