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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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TEŞEKKÜR

Bu çalışmamı, Batı Toros dağlarında doğup büyüyen ve hiç
okula gitmeyen ama “Her çocuk okula gitmelidir, okumalıdır.
Ancak tercih yapmak zorunda kalırsak mutlaka öncelikle kız
çocuklarını okutmalıyız!” diyen, yakından tanıdığım gerçek bir
aydın olan anam rahmetli Ayşe Adak’a armağan ediyorum.

Prof.Dr. Muzaffer Adak



Giriş
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BÖLÜM 1

GİRİŞ
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Prof.Dr. Muzaffer Adak Hakkında 1

• 01.11.1972 Denizli, Çameli, Kolak köyünde doğdu.

• Denizli Cafer Sadık Abalıoğlu İlkokulu’nda okudu.

• Denizli İmam Hatip Ortaokulu’nda okudu.

• Denizli Lisesi’nde okudu.

• İstanbul Teknik Üniversitesi, Fizik Mühendisliği
Bölümünden mezun oldu.

• Boğaziçi Üniversitesi, Fizik Anabilim Dalı yüksek lisans
öğrencisi olarak İngilizce hazırlık okudu.

• Pamukkale Üniversitesi, Fizik Anabilim Dalı’nda yüksek
lisansını tamamladı.

• Orta Doğu Teknik Üniversitesi, Fizik Anabilim Dalı’nda
doktorasını yaptı.

• Doktora tez aşamasındayken İngiltere, University of Kent
at Canterbury’de ziyaretçi araştırmacı olarak bir yıl kaldı.
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Prof.Dr. Muzaffer Adak Hakkında 2

• Pamukkale Üniversitesi, Fizik Bölümü’nde değişik
ünvanlarda çalıştı.
• Araştırma Görevlisi
• Öğretim Görevlisi
• Yardımcı Doçent Doktor
• Doçent Doktor
• Profesör Doktor (devam ediyor)

• Pamukkale Üniversitesi’inde farklı idari görevler yaptı.
• Bölüm başkan yardımcılığı
• Anabilim dalı başkanlığı
• Bölüm başkanlığı
• Teknokent genel müdürlüğü
• Meslek yüksekokulu müdürlüğü
• Senato üyeliği

• Evli ve 3 çocuk babasıdır.

• Koşmayı, yüzmeyi, badminton oynamayı, tüple dalmayı,
bisiklet binmeyi, kitap okumayı ve düşünmeyi sever.
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Ders Hakkında 1

Bu ders notları 2020-2021 eğitim öğretim yılı güz döneminde
Pamukkale Üniversitesi, Fen Edebiyat Fakültesi, Fizik
Bölümünde okutulan FIZ 201 Fizikte Matematik Metotlar
dersi için hazırlanmıştır. Bu notlar, bilimsel metinler yazmak
için kullanılan açık kaynaklı bulut-tabanlı LATEX editörü olan
overleaf üzerinde yazılmıştır, www.overleaf.com.

Bu ders, Fizik lisans programının müfredatının ikinci yılının ilk
döneminde yer alan haftada dört saatlik bir derstir. Fizik
bölümünün müfredatının ilk yılının güz döneminde Genel
Matematik-I ve bahar döneminde Genel Matematik-II dersleri
vardır. Her iki ders de hafta altı saattir. Bunlardan başka
müfredatta ayrıca Lineer Cebir veya Diferansiyel Denklemler
gibi matematik dersleri veya Fizikte Matematik Metotlar-II
gibi bu dersin devamı niteliğinde bir ders yoktur. Dersin içeriği
buna göre belirlenmiştir.
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Ders Hakkında 2

2020 güz döneminde dünyayı etkisi altına alan Covid-19 virüs
salgını olduğundan dersler uzaktan internet vasıtasıyla
çevrimiçi yapılmıştır. Pamukkale Üniversitesi ters-yüz eğitim
modelini benimsemiştir. Bu model iki aşamadan oluşmaktadır.
İlk aşama haftalık konu anlatım videosundan, ikinci aşama da
öğrencilerle çevrim içi canlı buluşmadan oluşmaktadır. İlk
aşamada, hocalar dersle ilgili hafta hafta sunum dosyaları
hazırlamıştır, bunların sunumunu videoya çekmiştir ve bu
videoları öğrencilerin ulaşabileceği bir platforma yüklemiştir.
Öğrencilerin ilgili videoyu canlı derse gelmeden önce izlemeleri
beklenmiştir. İkinci aşamada, haftalık ders programındaki
saatinde hoca ile öğrenciler internet üzerinden canlı çevrim içi
olarak bir araya gelmiştir ve ders sunum videosundaki konuları
soru-cevap biçiminde tartışmışlardır. Bu ders notları, birinci
aşama için hazırlanmıştır. İkinci aşamadaki canlı hoca-öğrenci
buluşmasında çözülen örnekler burada yoktur.
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Dersin Amacı ve Seviyesi

Doğanın iletişim dili matematiktir. Fizik de atom altı
parçacıklardan evren ölçeğine kadar her türlü doğa olaylarını
inceleyen bilimdir. Bu nedenle, iyi derecede matematik bilmek
işimizi kolaylaştıracaktır. Bu derste bu işi en temel seviyede
yapacağız. İleri düzey matematik araçlarını seçmeli derslerde
ve lisansüstü eğitimde öğreneceksiniz.
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BÖLÜM 2

VEKTÖRLER
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Temel Tanımlar

Bir vektörü üç farklı yolla tanımlayabiliriz:

1 Geometrik yaklaşımda, yönlü doğru parçasıdır. Özellikle
iki boyutta çok kullanışlıdır.

2 Cebirsel yaklaşımda, n boyutlu uzayda n tane sayıdan
oluşan bir nesnedir. Üç ve daha yüksek boyutlarda
kullanışlıdır.

3 Aksiyomatik yaklaşımda, belli kuralları sağlayan bir
kümenin elemanıdır. Bu yaklaşım özellikle
fonksiyonlardan oluşan vektör uzaylarında kullanışlıdır.

Öncelikle iki boyutta vektörlerin temel özelliklerini gözden
geçirelim.
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Vektörlerde Toplama ve Çıkarma

İki boyutta ~A vektörünü başlangıcı, bitişi ve yönü olan bir okla
temsil edebiliriz. İki vektörü toplayabilir, çıkarabilir ve bir
skaler ile çarpabiliriz.

• ~A + ~B = ~B + ~A komütatiflik (sıra değiştirme)

• (~A + ~B) + ~C = ~A + (~B + ~C ) asosiyatiflik (birleşme)

• ~A− ~B = −(~B − ~A) anti komütatiflik

• a ~A = ~B burada a ∈ R
~A vektörünü bazen A ile gösteririz. |~A| ≡ A ile ~A’nın boyu
(normu veya büyüklüğü) gösterilir ve daima A ≥ 0 olur.

(a) Toplama
(b) Çıkarma (c) Skalerle Çarpım
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Vektörün Paralel Taşınması

Önümüzdeki masa yüzeyi 2-boyutlu düz bir uzaydır. Bu uzaya
iki boyutlu Euclid uzayı deriz ve R2 ile gösteririz. R2’de bir
vektörü paralel taşımak, okun boyunu ve yönünü
değiştirmeden yeni bir kopyasını başka bir noktaya çizmek
demektir. Bu işi yapmanın pratik bir yolu zemini hayali
karelere bölmektir.

Buradaki hayali yatay çizgilerden ve hayali düşey çizgilerden
birer tanesini referans çizgisi olarak alırız. Yatay referans
çisgisine x-ekseni, düşey referans çizgisine y -ekseni ve ikisinin
kesiştiği noktaya da orijin deriz.
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Kartezyen Koordinat Sistemi

R2 uzayındaki noktaları betimlemek için biri birine dik x ve y
eksenleri kullanılır, N = (x , y). Burada x ve y kartezyen
koordinatlardır.

Koorinatların tanım bölgeleri; −∞ ≤ x , y ≤ +∞
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Kutupsal Koordinat Sistemi

R2 uzayındaki noktaları betimlemek için kullanılan yaygın
başka bir koordinat sistemi de r ve θ kutupsal koordinatlarının
oluşturduğu kutupsal koordinat sistemidir, P = (r , θ).

x = r cos θ
y = r sin θ
r = (x2 + y2)1/2

tan θ = y/x
0 ≤ r ≤ ∞
0 ≤ θ ≤ 2π

x koordinatı sağa doğru artıyor.

y koordinatı yukarı doğru artıyor.

r koordinatı 0 merkezli r yarıçaplı çemberin merkezinden
dışarıya doğru artıyor.

θ koordinatı +x ekseninden ters saat yönüne doğru artıyor.
Bunu çembere teğet yönlü doğru olarak düşünebiliriz.
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Birim Vektör ve Baz Vektörler

Boyu 1 birim olan ve sadece yön gösteren bir vektöre birim
vektör denir. Â niceliği, ~A’nın birim vektörüdür. Böylece
~A = AÂ yazabiliriz. Burada A vektörün büyüklüğünü, Â da
vektörün yönünü gösterir.

ı̂ : x koordinatının artış yönünü gösteren birim vektör

̂ : y koordinatının artış yönünü gösteren birim vektör

k̂ : z koordinatının artış yönünü gösteren birim vektör

{ı̂, ̂, k̂} kümesine baz
vektörler kümesi denir.
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Vektörün Bileşenleri

Elimizde bir koordinat sistemi varsa, baz vektörler var
demektir. Baz vektörlerimiz varsa, bu uzaydaki her hangi bir
vektörün bileşenlerini yazabiliriz.

Ax : ~A’nın x bileşeni

Ay : ~A’nın y bileşeni

Şekle göre şöyle yazabiliriz; ~A = Ax ı̂+ Ay ̂.

Bileşenler skaler niceliklerdir ve pozitif ya da negatif olabilirler.
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Lineer Bağımsızlık

ci ’ler reel sabitler olmak üzere {~A1, ~A2, · · · , ~An} kümesinin
elemanları arasındaki

c1
~A1 + c2

~A2 + · · ·+ cn ~An = 0

bağıntısının tek çözümü c1 = c2 = · · · = cn = 0 ise buradaki n
tane vektör lineer bağımsızdır denir ve vektörlerden hiç biri
diğerleri cinsinden yazılamaz. Bu kümeye n boyutlu reel vektör
uzayı adı verilir. Lineer bağımsız vektörlerden baz vektör
kümesi oluşturulabilir. Örneğin {ı̂, ̂, k̂} kümesinin elemanları
lineer bağımsızdır, dolayısyla baz vektörüdürler. Ayrıca, bu
uzayın boyutu 3’tür.

Eğer ci ’lerden en az bir tanesi sıfırdan farklıysa ~Ai vektörleri
lineer bağımlıdır denir ve bu durumda vektörlerden biri
diğerleri cinsinden yazılabilir.
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3 Boyutlu Kartezyen Koordinatlar

Bir vektörün üç tane bileşeni olur.

a : ~R2’nin x bileşeni

b : ~R2’nin y bileşeni

c : ~R2’nin z bileşeni

Şekle göre ~R1 = aı̂+ b̂ ve ~R2 = aı̂+ b̂+ ck̂ olur.
Ok temsillerini kullandığımızda iki vektörü toplamak için
vektörleri paralel taşımak zorundaydık. Ancak baz vektörlerin
yardımıyla vektörlerin toplamını hızlıca yapabiliriz.

~R1 + ~R2 = aı̂+ b̂+ aı̂+ b̂+ ck̂

= 2aı̂+ 2b̂+ ck̂
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Vektörün Cebirsel (Bileşen) Gösterimi

Şimdiye kadar bir vektörü göstermek için ya ok resimleri çizdik
ya da eksen takımları çizdik. Artık bir vektörü daha soyut
olarak temsil edeceğiz.

~A = Ax ı̂+ Ay ̂+ Az k̂ ≡ (Ax ,Ay ,Az)

Dikkat! Birim vektörleri kullanmadan sadece bileşenler
cinsinden ~A’yı yazdık. Benzer olarak ~B’yi de yazabiliriz.

~B = (Bx ,By ,Bz)

Böylece iki vektörü kolaylıkla toplayabiliriz; ~C = ~A + ~B.

~C = (Ax + Bx︸ ︷︷ ︸
Cx

,Ay + By︸ ︷︷ ︸
Cy

,Az + Bz︸ ︷︷ ︸
Cz

)
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Vektörün İndis Gösterimi

Her zaman kartezyen koordinatlarda ve de üç boyutta
çalışmayız ve hesap yapmayız. Bunun için x , y , z indislerini
daha genel veya daha soyut hale getirelim.

~A = A1ê1 + A2ê2 + A3ê3 =
3∑

i=1

Ai êi

Bu yazılışta {ê1, ê2, ê3} baz vektörler kümesidir. Kümenin her
elemanı birim vektördür ve biri birine diktir. n boyutlu uzayda
n bileşenli vektörler için toplamın üst sınırı n yapılır.

A1 : ~A’nın birinci bileşeni

A2 : ~A’nın ikinci bileşeni

A3 : ~A’nın üçüncü bileşeni

~A ≡ Ai = (A1,A2,A3)

Ai : ~A vektörünün indis gösterimidir.
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Küresel Koordinatlar 1

Kartezyen koordinatlarda;

ê1 → ı̂ = x̂
ê2 → ̂ = ŷ
ê3 → k̂ = ẑ

A1 → Ax

A2 → Ay

A3 → Az

Fizikte ve mühendislikte sıkça kullanılan başka bir koordinat
sistemi küresel koordinatlardır, (r , θ, ϕ).

Koordinat dönüşümleri
x = r sin θ cosϕ
y = r sin θ sinϕ
z = r cos θ
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Küresel Koordinatlar 2

Ters koordinat dönüşümleri
r =

√
x2 + y2 + z2

cos θ = z/
√
x2 + y2 + z2

tanϕ = y/x
Tanım bölgeleri
0 ≤ r ≤ ∞
0 ≤ θ ≤ π
0 ≤ ϕ ≤ 2π

Küresel koordinatlarda;

ê1 → êr = r̂
ê2 → êθ = θ̂
ê3 → êϕ = ϕ̂

A1 → Ar

A2 → Aθ
A3 → Aϕ
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Silindirik Koordinatlar

Fizikte ve mühendislikte sıkça kullanılan diğer bir koordinat
sistemi de silindirik koordinatlardır, (r , θ, z).

Koordinat dönüşümleri
x = r cos θ
y = r sin θ
z = z
Ters koordinat dönüşümleri
r =

√
x2 + y2

tan θ = y/x
z = z
Tanım bölgeleri
0 ≤ r ≤ ∞
0 ≤ θ ≤ 2π
−∞ ≤ z ≤ +∞

Silindirik koordinatlarda;
ê1 → êr = r̂
ê2 → êθ = θ̂
ê3 → êz = ẑ

A1 → Ar

A2 → Aθ
A3 → Az
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İki Vektörün Skaler (Nokta) Çarpımı 1

Şimdiye kadar vektörü bir skaler sayı ile çarptık, iki vektörü
topladık, iki vektörü çıkardık, ama iki vektörün çarpımı
hakkında konuşmadık.

~A. ~B = AB cos θ
~A. ~B = ~B. ~A komütatiflik
~A. ~B ∈ R
~A. ~B = 0, > 0, < 0 olabilir
~A. ~A = A2 ≥ 0
A = (~A. ~A)1/2 vektörün normu

Skaler çarpım veya nokta çarpımı denir. Geometrik olarak iki
vektörün paralel bileşenlerini çarparız.

~A. ~B = AB‖ = A‖B

A‖ : ~A’nın ~B’ye paralel bileşeni

B‖ : ~B’nin ~A’ya paralel bileşeni
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İki Vektörün Skaler (Nokta) Çarpımı 2

Yukarıdaki temel tanıma göre baz vektörlerin kendi
aralarındaki skaler çarpımlarını yazabiliriz.

ê1.ê1 = 1
ê2.ê2 = 1
ê3.ê3 = 1

Normalizasyon
(Bire boylandırma)

ê1.ê2 = 0
ê2.ê3 = 0
ê3.ê1 = 0

Ortogonallik
(Diklik)

Bu iki sonucu birleştirip daha özet ve soyut olarak şöyle
yazarız.

êi .êj = δij Ortonormallik

δij Kronecker deltası denir; δij =

{
1 i = j ise
0 i 6= j ise
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İki Vektörün Skaler (Nokta) Çarpımı 3

Elimizde ortonormal baz vektörler varsa, iki vektörün skaler
çarpımını bileşenler cinsinden ifade edebiliriz.

~A. ~B =

(∑
i

Ai êi

)
.

∑
j

Bj êj


=

∑
i

∑
j

AiBj (êi .êj)

=
∑
i

∑
j

AiBjδij =
∑
i

AiBi

= A1B1 + A2B2 + A3B3

Kural:
∑

j (bir şey)jδij = (bir şey)i

Vektörün Normu; A =
√
~A. ~A =

√
A2

1 + A2
2 + A2

3
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İki Vektörün Skaler (Nokta) Çarpımı 4

Elimizde ortonormal baz vektörler olduğunda, iki vektörün
skaler çarpımını bileşenler cinsinden ifade ettik. Şimdi de iki
vektör arasındaki açıyı bileşenler cinsinden yazacağız.

~A. ~B = AB cos θ

O halde

cos θ =
~A. ~B

AB

=
A1B1 + A2B2 + A3B3√

A2
1 + A2

2 + A2
3

√
B2

1 + B2
2 + B2

3
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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İki Vektörün Vektörel (Kros) Çarpımı 1

Yine iki vektörü çarpacağız ama sonuç bu sefer bir vektör
çıkacak; ~C = ~A× ~B.

C = |~A× ~B| = AB sin θ norm
~A× ~B = −~B × ~A anti komütatiflik
~A× ~A = 0

~C vektörünün yönü sağ el kuralı ile belirlenir. Vektörel çarpım
veya kros çarpım denir. Geometrik olarak iki vektörün dik
bileşenlerini çarparız.

|~A× ~B| = AB⊥ = A⊥B

A⊥ : ~A’nın ~B’ye dik bileşeni
B⊥ : ~B’nin ~A’ya dik bileşeni
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İki Vektörün Vektörel (Kros) Çarpımı 2

Yukarıdaki temel tanıma göre baz vektörlerin kendi
aralarındaki vektörel çarpımlarını yazabiliriz.

ê1 × ê1 = 0
ê2 × ê2 = 0
ê3 × ê3 = 0

ê1 × ê2 = ê3

ê2 × ê3 = ê1

ê3 × ê1 = ê2

Bu kurallara göre iki vektörün vektörel çarpımını bileşenler
cinsinden şöyle yazabiliriz.

~C = ~A× ~B

= ê1 (A2B3 − A3B2)︸ ︷︷ ︸
C1

+ê2 (A3B1 − A1B3)︸ ︷︷ ︸
C2

+ê3 (A1B2 − A2B1)︸ ︷︷ ︸
C3
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İki Vektörün Vektörel (Kros) Çarpımı 3

İki vektörün skaler çarpımında Kronecker deltasından
faydalanmıştık. Burada da tümüyle antisimetrik epsilondan
faydalanabiliriz.

Önce ε123 = +1 olarak sabitleriz. Buradaki her bir indisin çift
sayıdaki her yer değiştirmesi bir tane + işareti verir.

ε123 = ε231 = ε312 = ε123 = +1

Her bir indisin tek sayıdaki her yer değiştirmesi bir tane eksi
(−) işareti verir, ε213 = −1.

ε213 = ε132 = ε321 = ε213 = −1

Her hangi iki indis aynıysa epsilon sıfır olur.

ε112 = ε122 = ε323 = · · · = 0
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İki Vektörün Vektörel (Kros) Çarpımı 4

Bunları toparlarsak şunu yazabiliriz.

εijk =


+1 ijk 123 dizilişinin çift permütasyonuysa
−1 ijk 123 dizilişinin tek permütasyonuysa

0 ijk rakamlarında iki rakam aynıysa

Buna göre ~C = ~A× ~B işlemini indis gösteriminde şöyle ifade
edebiliriz.

Ci =
∑
j

∑
k

εijkAjBk

Burada AjBk = BkAj olabilir, ama AjBk 6= BjAk .

Örneğin yukarıda i = 1 alalım.

C1 =
3∑

j=1

3∑
k=1

ε1jkAjBk
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İki Vektörün Vektörel (Kros) Çarpımı 5

Burada önce j toplamını sonra k toplamını açalım.

C1 =
3∑

k=1

(
���:

0ε11k A1Bk + ε12kA2Bk + ε13kA3Bk

)
= ���:

0ε121 A2B1 +���:
0ε122 A2B2 +���:

1ε123 A2B3

+���:
0ε131 A3B1 +���:

−1ε132 A3B2 +���:
0ε133 A3B3

= A2B3 − A3B2

Kartezyen koordinatlarda Cx = AyBz − AzBy eşdeğerdir.

Küresel koordinatlarda Cr = AθBϕ − AϕBθ eşdeğerdir.

Silindirik koordinatlarda Cr = AθBz − AzBθ eşdeğerdir.
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Vektör Özdeşlikleri 1

Soru: ~A.(~B × ~C ) = ~B.( ~C × ~A) = ~C .(~A× ~B) doğrulayınız.

Cevap: εijk = εjki = εkij bilgisini sıkça kullanacağız. Dikkat,
her birinde çift permütasyon var.

Ayrıca,
∑

i ,j ,k ≡
∑

i

∑
j

∑
k kısaltmasını kullanacağız.

~A.(~B × ~C ) =
∑
i

Ai (~B × ~C )i =
∑
i ,j ,k

AiεijkBjCk =
∑
i ,j ,k

εijkAiBjCk

~B.( ~C × ~A) =
∑
j

Bj( ~C × ~A)j =
∑
i ,j ,k

BjεjkiCkAi =
∑
i ,j ,k

εijkAiBjCk

~C .(~A× ~B) =
∑
k

Ck(~A× ~B)k =
∑
i ,j ,k

CkεkijAiBj =
∑
i ,j ,k

εijkAiBjCk

”Sağ” taraflar eşitse ”sol” taraflar da eşittir.
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Vektör Özdeşlikleri 2

Soru: ~A× (~B × ~C ) = (~A. ~C )~B − (~A. ~B) ~C doğrulayınız.

Cevap: Yine εijk = εjki = εkij ve
∑

i ,j ,k ≡
∑

i

∑
j

∑
k

kullanacağız. Önce ~D = ~A× (~B × ~C ) diyelim.

Di =
∑
j ,k

εijkAj(~B × ~C )k =
∑
j ,k

εijkAj

∑
l ,m

εklmBlCm

=
∑

j ,k,l ,m

εkijεklmAjBlCm =
∑
j ,l ,m

(δilδjm − δimδjl)AjBlCm

=
∑
j

AjBiCj −
∑
j

AjBjCi = (~A. ~C )Bi − (~A. ~B)Ci

~D = (~A. ~C )~B − (~A. ~B) ~C

Kurallar;
∑

k εijkεlmk = δilδjm − δimδjl∑
j ,k εijkεljk = 2!δil ve

∑
i ,j ,k εijkεijk = 3!
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Yönlü Türev İşlemcisi: Nabla Operatörü

Kartezyen koordinatlarda nabla operatörü; ~∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
Koordinat dönüşümleri yardımıyla ve türevde zincir kuralını
kullanarak

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂ϕ

∂x

∂

∂ϕ

∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
+
∂ϕ

∂y

∂

∂ϕ

∂

∂z
=
∂r

∂z

∂

∂r
+
∂θ

∂z

∂

∂θ
+
∂ϕ

∂z

∂

∂ϕ

nabla operatörünü küresel koordinatlarda yazabiliriz.

~∇ =

(
∂

∂r
,

1

r

∂

∂θ
,

1

r sin θ

∂

∂ϕ

)
Benzer işlemlerle silindirik koordinatlarda; ~∇ =

(
∂
∂r ,

1
r
∂
∂θ ,

∂
∂z

)
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Skaler Fonksiyonun Gradyanı 1

Kartezyen koordinatlarda f = f (x , y , z) üç değişkenli skaler bir
fonksiyon olsun. Buna fizikte skaler alan denir. Örneğin
elektriksel potansiyel alanı. f ’nin ~r = (x , y , z) noktasındaki
değeri ile hemen çok yakınında ~r + d~r noktasındaki değeri
arasındaki farka f ’deki değişim adı verilir;
df = f (~r + d~r)− f (~r).

df (x , y , z) =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz

Bunu iki vektörün skaler çarpımı olarak yazalım.

df =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.(dx , dy , dz) := ~∇f .d~r

Burada ~∇f :=
(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
vektörüne f ’nin gradyanı denir.

d~r vektörü uzaydaki bir noktadan çok yakın diğer bir noktaya
gidişi gösterir.
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Skaler Fonksiyonun Gradyanı 2

~∇f ’nin iki özelliği.

1 f0 bir sabit olmak üzere f (x , y , z) = f0 bir yüzey tanımlar.
Bu yüzeye fizikte eşpotansiyel yüzey denir. Bu eşitliğin
her iki tarafının diferansiyelini alalım; df = 0 yani
~∇f .d~r = 0. İki vektörün skaler çarpımı sıfır ise iki vektör
biri birine diktir. d~r vektörü bu yüzey üzerinde bir vektör
olduğu için ~∇f vektörü bu yüzeye diktir. Böylece yüzey
normallerini hesap edebiliriz. Benzer olarak f (x , y) = f0
bir eğri tanımlar ve ~∇f vektörü bu eğriye diktir.

2 f ’deki değişimi yeniden yazalım;
df = ~∇f .d~r = |~∇f ||d~r | cos θ burada θ iki vektör
arasındaki açı. θ = 0, yani iki vektör paralel, olduğunda
df maksimum olur. Sonuçta ~∇f vektörünün yönü f deki
artışın maksimum olduğu yönü verir.
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Skaler Fonksiyonun Gradyanı 3

Üç koordinat sisteminde ~∇f nedir?

Kartezyen f (x , y , z) ~∇f =
(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
Küresel f (r , θ, ϕ) ~∇f =

(
∂f
∂r ,

1
r
∂f
∂θ ,

1
r sin θ

∂f
∂ϕ

)
Silindirik f (r , θ, z) ~∇f =

(
∂f
∂r ,

1
r
∂f
∂θ ,

∂f
∂z

)
Üç koordinat sisteminde d~r nedir?

Kartezyen ~r = (x , y , z) d~r = (dx , dy , dz)

Küresel ~r = (r , θ, ϕ) d~r = (dr , rdθ, r sin θdϕ)

Silindirik ~r = (r , θ, z) d~r = (dr , rdθ, dz)



Giriş
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Vektörel Fonksiyonun Diverjansı 1

Kartezyen koordinatlarda ~A vektörünün bileşenleri
koordinatlara bağlı olsun.

~A = (Ax(x , y , z),Ay (x , y , z),Az(x , y , z))

Buna fizikte vektörel alan denir. Örneğin elektrik alan.
~∇. ~A ≡ div~A ile ~A’nın diverjansını gösteririz. ~∇. ~A skalerdir.

~∇. ~A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

Küresel ~A = (Ar (r , θ, ϕ),Aθ(r , θ, ϕ),Aϕ(r , θ, ϕ))

~∇. ~A =
1

r2

∂

∂r

(
r2Ar

)
+

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aϕ
∂ϕ



Giriş
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Vektörel Fonksiyonun Diverjansı 2

Silindirik ~A = (Ar (r , θ, z),Aθ(r , θ, z),Az(r , θ, z))

~∇. ~A =
1

r

∂

∂r
(rAr ) +

1

r

∂Aθ
∂θ

+
∂Az

∂z

Yorum: Vektörler biri birine yaklaşıyorsa ~∇. ~A < 0. Örneğin,
çok az dolu süs havuzunun zeminindeki delikten boşalırken
suyun hız dağılımı. Vektörler biri birinden uzaklaşıyorsa
~∇. ~A > 0. Örneğin, boş süs havuzunun zeminindeki musluk
havuzu dolduruken suyun hız dağılımı. Vektörler biri birine
paralelse ~∇. ~A = 0. Örneğin, musluktan aşağı doğru akan
suyun hız dağılımı.
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Vektörel Fonksiyonun Rotasyoneli 1

Yine kartezyen koordinatlarda ~A vektörünün bileşenleri
koordinatlara bağlı olsun.

~A = (Ax(x , y , z),Ay (x , y , z),Az(x , y , z))

Örneğin manyetik alan. ~∇× ~A ≡ rot~A ile ~A’nın rotasyonelini
gösteririz. ~∇× ~A vektördür.

~∇× ~A =

(
∂Az

∂y
− ∂Ay

∂z
,
∂Ax

∂z
− ∂Az

∂x
,
∂Ay

∂x
− ∂Ax

∂y

)
Küresel ~A = ~A(r , θ, ϕ)

~∇× ~A =
1

r sin θ

(
∂

∂θ
(sin θAϕ)− ∂Aθ

∂ϕ

)
r̂

+
1

r

(
1

sin θ

∂Ar

∂ϕ
− ∂

∂r
(rAϕ)

)
θ̂

+
1

r

(
∂

∂r
(rAθ)− ∂Ar

∂θ

)
ϕ̂
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Vektörel Fonksiyonun Rotasyoneli 2

Silindirik ~A = ~A(r , θ, z)

~∇× ~A =

(
1

r

∂Az

∂θ
− ∂Aθ

∂z

)
r̂ +

(
∂Ar

∂z
− ∂Az

∂r

)
θ̂

+
1

r

(
∂

∂r
(rAθ)− ∂Ar

∂θ

)
k̂

Yorum: Eğer ~A vektör alanı kapalı
bir eğrinin teğetlerinden oluşuyorsa
~∇× ~A 6= 0 olur. Örneğin, dere
kenarında elinizdeki kuru ot
parçalarını suya attınız ve bu parçalar
su yüzeyinde daireler çiyorlarsa orada
suyun hız alanı vektörünün rotayoneli
sıfır olmaz.
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gradf , div~A ve rot~A için Bazı Özellikler

1 ~∇.(f ~A) = (~∇f ). ~A + (~∇. ~A)f

2 ~∇.(~A× ~B) = (~∇× ~A). ~B − (~∇× ~B). ~A

3 ~∇× (f ~A) = (~∇f )× ~A + (~∇× ~A)f

4 ~∇× (~∇f ) = 0

5 ~∇.(~∇× ~A) = 0

6 ~∇× (~∇× ~A) = ~∇(~∇. ~A)−∇2 ~A

Burada ∇2 ≡ ~∇.~∇ Laplace operatörü denir. Kartezyen
koordinatlarda şöyledir.

∇2 :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Küresel ve silindirik koordinatlarda ∇2 ifadesine kitaplardan
bakınız.
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Vektör Alanının Yol İntegrali 1

En genelde şekildeki eğriyi (yörüngeyi ya da yolu) C ile temsil
ederiz ve şöyle formülleştiririz.

~r(t) = x(t )̂ı+ y(t)̂+ z(t)k̂ = (x(t), y(t), z(t))

Burada t parametresi t0 ≤ t ≤ t1 aralığında tanımlı sürekli bir
değişkendir.

~A(~r) vektör alanının (vektörel
fonksiyonunun) C eğrisi boyunca
integralini

´
C
~A.d~r ile gösteriririz.

Genel olarak bu integral eğrinin
şekline (yani yola) bağlıdır.

Özel olarak bazen
´
C
~A.d~r yoldan bağımsız olabilir. Örneğin,

klasik mekanikte mekanik enerjinin korunumu.
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Vektör Alanının Yol İntegrali 2

Burada C eğrisi üzerinde sonsuz yakın iki nokta arasındaki
yerdeğiştirme d~r ’yi t cinsinden şöyle yazabiliriz.

d~r(t) = (dx(t), dy(t), dz(t)) = (ẋ(t)dt, ẏ(t)dt, ż(t)dt)

Burada dx = dx
dt dt = ẋdt, · · ·

ˆ
C

~A.d~r =

ˆ
C

(Axdx + Aydy + Azdz)

=

ˆ t1

t0

(Ax ẋ + Ay ẏ + Az ż) dt

Özellikler

1
´
−C

~A.d~r = −
´
C
~A.d~r

2
´
C (~A + ~B).d~r =

´
C
~A.d~r +

´
C
~B.d~r

3
´
C1+C2

~A.d~r =
´
C1

~A.d~r +
´
C2

~A.d~r
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Özel
Fonksiyonlar

Kaynaklar

47/327

Vektör Alanının Yüzey İntegrali

Üç boyutlu Euclid uzayımızda bir yüzeyi, yüzey büyüklüğü
çarpı yüzeyin normali olarak vektörel bir nicelik haline
getirebiliriz; ~S = Sn̂. Küre veya semer gibi eğrisel yüzeylerde
n̂’nin yönü noktadan noktaya değiştiği için toplam eğrisel
yüzeyi minik minik bir sürü düzlemsel yüzeylere böleriz. Her
bir sonsuz küçük düzlemsel yüzey vektörünü d ~S = dSn̂ olarak
ifade ederiz.

´
S
~A.d ~S integrali ~A vektörünün S yüzeyinden geçen toplam

akısını tanımlar.
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Düzlemde Green Teoremi

İki boyutlu düzlemsel bir uzay düşünelim; xy -düzlemi diyelim.¸
C
~A(~r).d~r kapalı yörünge intergralinin sonucu yüzey inetgrali

olarak yazılabilir.˛
C

(Axdx + Aydy) =

¨
S

(
∂Ay

∂x
− ∂Ax

∂y

)
dxdy

Burada Ax = Ax(x , y) ve Ay = Ay (x , y). Kapalı C eğrisi, açık
S yüzeyinin sınırıdır. Sol taraftaki kapalı yörünge integralini
alırken kapalı C eğrisini sağ el kuralına göre (yani sağ elin baş
parmağı +z ’yi gösterecek şekilde dört parmak yönünde)
dolaşırız.
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Diverjans Teoremi

Üç boyutlu Eclid uzayında V hacmine sahip bölgenin sınırını
kapalı S yüzeyi ile gösterelim. ~A vektör alanının diverjansının
hacim integralini vektörün yüzey integrali olarak yazabiliriz.

‹
S

~A.d ~S =

˚
V

(~∇. ~A)dV

Burada ~A = ~A(~r). Ayrıca, d ~S ’nin yönü her zaman kapalı
yüzeyin dışına doğru olacak. Örneğin, elektrik konusunu
çalışırken Gauss yasasında bu sonucu kullanırız.
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Stokes Teoremi

Üç boyutlu Eclid uzayında eğrisel açık S yüzeyine sahip
bölgenin sınırını kapalı C eğrisi ile gösterelim. ~A vektör
alanının rotasyonelinin yüzey integralini vektörün yörünge
integrali olarak yazabiliriz.

˛
C

~A.d~r =

¨
S

(~∇× ~A).d ~S

Burada ~A = ~A(~r). Ayrıca, C ’nin yönü her zaman sağ el kuralı
ile belirlenir. Yani, sağ elin dört parmağı C yönünde iken baş
parmak S yüzeyinin normalini gösterir. Örneğin, elektrik ve
manyetizma konusunu çalışırken Faraday yasasında bu sonucu
kullanırız.

Düzlemde Green teoremi bunun düzlem yüzeyler için yazılmış
özel bir durumudur.
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Sorular ve Çözümler

Soru: ~A = 2ı̂+ ̂− 3k̂ ile ~B = 2ı̂− 2̂+ k̂ vektörlerine dik ve
boyu 5 br olan vektörü bulunuz.

Çözüm: ~C = ~A× ~B ile elde edilen ~C vektörü tanım gereği
hem ~A hem de ~B ye diktir.

~C =(AyBz − AzBy )̂ı+ (AzBx − AxBz)̂+ (AxBy − AyBx)k̂

=− 5ı̂− 8̂− 6k̂

Bunun boyunu ayarlamak için ~C ′ = N ~C diyelim. Şimdi de∣∣∣ ~C ′∣∣∣ =
√
~C ′. ~C ′ = 5 yaparak N = 1/

√
5 buluruz. O halde,

cevap şudur.

~C ′ = − 1√
5

(5ı̂+ 8̂+ 6k̂)
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Sorular ve Çözümler

Soru: ~C = 3xz2ı̂+ 2xy ̂− x2k̂ vektör alanı ve φ = 3x2 − yz
skaler alanı için div(φ ~C ) hesap ediniz.

Çözüm: Diverjansın özelliğini kullanarak şunu yazabiliriz.

~∇.
(
φ ~C
)

=
(
~∇φ
)
. ~C + φ

(
~∇. ~C

)
=

(
∂φ

∂x
ı̂+

∂φ

∂y
̂+

∂φ

∂z
k̂

)
. ~C

+ φ

(
∂Cx

∂x
+
∂Cy

∂y
+
∂Cz

∂z

)
=
(

6x ı̂− z ̂− y k̂
)
.
(

3xz2ı̂+ 2xy ̂− x2k̂
)

+
(
3x2 − yz

) (
3z2 + 2x

)
= 27x2z2 − 4xyz + x2y + 6x3 − 3yz3
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Sorular ve Çözümler

Soru: ~A = 3xz ı̂+ 2xy2̂− yzk̂ vektör alanı ve φ = 3x2 − yz
skaler alanı için (a) ~∇φ =? (b) ~∇. ~A =? (c) ~∇× ~A =?

Çözüm: Grad, div ve rot tanımlarını kullanalım.

~∇φ =
∂φ

∂x
ı̂+

∂φ

∂y
̂+

∂φ

∂z
k̂

= 6x ı̂− z ̂− y k̂

~∇. ~A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

= 3z + y(4x − 1)

~∇× ~A =

(
∂Az

∂y
− ∂Ay

∂z

)
ı̂+

(
∂Ax

∂z
− ∂Az

∂x

)
̂+

(
∂Ay

∂x
− ∂Ax

∂y

)
k̂

= (−z − 0)̂ı+ (3x − 0)̂+ (2y2 − 0)k̂

= −z ı̂+ 3x ̂+ 2y2k̂



Giriş
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BÖLÜM 3

KOMPLEKS SAYILAR
ve FONKSİYONLAR
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Kompleks Sayı Nedir?

Aşağıda verilen işlem kurallarını sağlayan sıralı iki reel sabit
çiftidir. (a, b) kompleks sayı, a ∈ R ve b ∈ R.

1 Toplama: (a, b) + (c , d) = (a + c, b + d)

2 Çıkarma: (a, b)− (c, d) = (a− c , b − d)

3 Çarpma: (a, b)(c , d) = (ac − bd , ad + bc)

4 Bölme: (a,b)
(c,d) = (ac+bd ,bc−ad)

c2+d2

Kompleks sayı (a, b) = a(1, 0) + b(0, 1) olarak yazılırsa, şöyle
de ifade edilebilir.

(a, b) ≡ a + ib ∈ C

(1, 0) ≡ 1 reel birim ⇒ 12 = +1 veya
√

+1 = 1
(0, 1) ≡ i sanal birim ⇒ i2 = −1 veya

√
−1 = i

Kompleks eşlenik: (a, b)∗ = (a,−b) veya i∗ = −i
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Örnek: 2− 3i ve 4 + 7i olsun.

• (2− 3i)∗ = 2− 3(−i) = 2 + 3i

• (2− 3i)(2− 3i)∗ = (2)(2) + (2)(3i) + (−3i)(2) + (−3i)(3i)

= (2)2 + (−3)2 = 13 ∈ R
NOT: Her zaman (a + ib)(a + ib)∗ = (a)2 + (b)2 ∈ R

• (2− 3i)−1 =
1

(2− 3i)
=

1

(2− 3i)

(2− 3i)∗

(2− 3i)∗
=

2 + 3i

13

• (2− 3i)(4 + 7i) = 29 + 2i

• 2− 3i

4 + 7i
=

(2− 3i)(4− 7i)

(4 + 7i)(4− 7i)
=
−13− 26i

65

Dikkat! Paydada kompleks sayı bırakılmaz.
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Kompleks Değişken ve Kompleks Düzlem

x ve y reel değerler alabilen değişkenler olmak üzere kompleks
sayılarla aynı işlem kurallarına uyan değişken çiftine “kompleks
değişken” denir; z = (x , y) veya z = x + iy ile gösterilir.

x = Re z = Re(z) : z ’nin reel kısmı
y = Im z = Im(z) : z ’nin sanal kısmı

r = |z | =
√
x2 + y2 : z ’nin modülü

(mutlak değeri) 0 ≤ r ≤ ∞

θ = arctan (y/x) : z ’nin argümanı
0 ≤ θ ≤ 2π

R’yi doğru üzerinde gösterirken, C’yi düzlemde gösteririz.
Buna kompleks düzlem denir. Bu resme de Argand diyagramı
adı verilir.

2. Bölge: π > θ > π/2 1. Bölge: π/2 > θ > 0

3. Bölge: 3π/2 > θ > π 4. Bölge: 2π > θ > 3π/2
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z’nin Kutupsal Gösterimi

ex = 1 + x + x2

2! + x3

3! + · · · serisinde x = iθ koyup i2 = −1,
i3 = −i , i4 = 1, vd kullanırsak, ardından
cos θ = 1− θ2

2! + θ4

4! −+ · · ·
sin θ = θ − θ3

3! + θ5

5! −+ · · ·
yazarsak şunu elde ederiz.

e iθ = cos θ + i sin θ Euler formülü

Şimdi, kompleks düzlemde z ’yi yeniden yazalım.

z = x + iy = r(cos θ + i sin θ) = re iθ De Moive formülü

z = x + iy : z ’nin kartezyen temsili
z = re iθ : z ’nin kutupsal temsili
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Örnek: Kutupsal Gösterim

(a) z = −1 + i (b) z = 3− 3
√

3i kompleks sayılarını kutupsal
gösterimde yazınız.

Çözüm: (a) Bu nokta r =
√

(−1)2 + 12 =
√

2 yarıçaplı
çember üzerinde. tan θ = (+1)/(−1) ise θ = π − π/4 = 3π/4
çünkü 2. bölgede

z =
√

2[cos(3π/4) + i sin(3π/4)] =
√

2e i3π/4 (θ = 135o)

(b) Bu nokta r =
√

(3)2 + (−3
√

3)2 = 6 yarıçaplı çember

üzerinde. tan θ = (−3
√

3)/(+3) ise θ = 2π − π/3 = 5π/3
çünkü 4. bölgede

z = 6[cos(5π/3) + i sin(5π/3)] = 6e i5π/3 (θ = 300o)
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Kutupsal Gösterimde Bazı İşlemler

z1 = r1e
iθ1 ve z2 = r2e

iθ2 iki tane kompleks değişken ve n bir
tamsayı olsun.

• z1z2 = r1r2e
i(θ1+θ2) = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

• z1/z2 = r1
r2
e i(θ1−θ2) = r1

r2
[cos(θ1 − θ2) + i sin(θ1 − θ2)]

• zn1 =
(
r1e

iθ1
)n

= rn1 [cos(nθ1) + i sin(nθ1)]

Kompleks düzlemde argümanı 2π kadar artırdığımızda aynı z
noktasına geliriz, çünkü sin(θ) = sin(θ + 2πk) ve
cos(θ) = cos(θ + 2πk) burada k = 0, 1, 2, · · · . O halde,

z = re iθ = re i(θ+2πk), k = 0, 1, 2, · · ·

Artık, z ’nin n. dereceden kökünü tanımlayabiliriz.

z1/n = r1/ne i(θ+2πk)/n

= r1/n

[
cos

(
θ + 2πk

n

)
+ i sin

(
θ + 2πk

n

)]
Dikkat! Burada k = 0, 1, 2, · · · , n − 1.
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Örnek: Kök Bulma

z3 − 1 = 0 denkleminin çözüm kümesini hesap ediniz.

Çözüm: z3 = 1 = 1 + i0 ise r =
√

12 + 02 = 1 ve
tan θ = 0/1 = 0’dan θ = 0 olur. O halde,
z3 = e i0 = e i(0+2πk) yazabiliriz.

z = e i(0+2πk)/3 = cos

(
2πk

3

)
+ i sin

(
2πk

3

)
, k = 0, 1, 2

k = 0 için z1 = cos(0) + i sin(0) = 1

k = 1 için z2 = cos
(

2π
3

)
+ i sin

(
2π
3

)
= −1

2 + i
√

3
2

k = 2 için z3 = cos
(

4π
3

)
+ i sin

(
4π
3

)
= −1

2 − i
√

3
2

Kompleks düzlemde birim çember üzerinde θ = 0o , θ = 120o

ve θ = 240o açılarındaki noktalara karşılık gelirler.
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Örnek: Cebirsel Denklem Çözümü

e2z2
= 1 + i bağıntısını sağlayan tüm z değerlerini bulunuz.

Çözüm: Önce 1 + i ’yi kutupsal koordinatlarda yazalım.
1 + i =

√
12 + 12e i [arctan(1/1)+2πk] =

√
2e(π/4+2πk)i

Şimdi soruda verilen eşitliğin ln’ini alalım.
2z2 = ln

√
2 + (π4 + 2πk)i = 1

2 ln 2 + (π4 + 2πk)i

z2 =
1

4
ln 2 +

(π
8

+ πk
)
i = re i(θ+2πl)

Burada r =
√

1
16 ln2 2 + π2( 1

8 + k)2 ve

tan θ = π(1/8+k)
(ln 2)/4 = π(1+8k)

2 ln 2 . Sonuçta z şöyle olur.

z =

[
1

16
ln2 2 + π2

(
k +

1

8

)2
] 1

4

e
i
[

1
2

tan−1
(
π(1+8k)

2 ln 2

)
+πl

]

Burada l = 0, 1 ve k = 0, 1, 2, · · ·
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Kompleks Fonksiyonlar 1

z = {z1, z2, z3 · · · } kümesine tanım bölgesi diyelim.
w = {w1,w2,w3 · · · } kümesine de değer bölgesi diyelim.
Tanım bölgesi z-kompleks düzleminde bir bölgedir, değer
bölgesi de w -kompleks düzleminde bir bölgedir.

w = f (z) kompleks fonksiyonu tanım bölgesinde bulunan her
bir kompleks sayıya değer bölgesinde bulunan bir kompleks
sayıyı bire bir ve örten olarak atayan bir kuraldır.

Örnek: w = z2 fonksiyonunun
z-düzlemindeki ABCD kenarlı
kare bölgesini w -düzleminde
hangi bölgeye taşıdığını
bulunuz. Bu işleme kompleks
fonksiyonun tasviri denir.
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Kompleks Fonksiyonlar 2

w = z2 fonksiyonunu açıkça yazalım,
u + iv = (x + iy)2 = x2 − y2 + i2xy . Böylece,

u(x , y) = x2 − y2 ve v(x , y) = 2xy

A kenarı: 0 ≤ x ≤ 1 ve y = 0 olduğu için v = 0 doğrusu ve
u = x2 yani 0 ≤ u ≤ 1.
B kenarı: x = 1 ve 0 ≤ y ≤ 1 olduğu için v = 2y ’den
y = v/2. Bunu u = 1− y2’de yerleştir; u = 1− v2/4
parabolü, 0 ≤ v ≤ 2.

C kenarı: y = 1 ve 0 ≤ x ≤ 1
olduğu için v = 2x ’den
x = v/2. Bunu u = x2 − 1’de
yerleştir; u = v2/4− 1
parabolü, 0 ≤ v ≤ 2.
D kenarı: 0 ≤ y ≤ 1 ve x = 0
olduğu için v = 0 doğrusu ve
u = −y2 yani −1 ≤ u ≤ 0.
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Kompleks Fonksiyonlarda Türev

Reel f (x) fonksiyonunda x0 noktası doğru üzerinde
olduğundan sadece sağdan ve soldan yaklaşarak limitler alıp,
iki sonuç aynıysa x0 noktasında türev tanımlıyorduk.
Kompleks f (z) fonksiyonu için z0 noktası düzlemde yer
aldığından z0 noktasına sonsuz sayıda yönden yaklaşabiliriz.
Bu da türev tanımını biraz daha zorlaştırır. Sembolik olarak
şöyle yazacağız.

lim
∆z→0

f (z + ∆z)− f (z)

∆z
=

df

dz
≡ f ′(z) ≡ w ′

Örnekler

1 w = Azk ise w ′ = Akzk−1

2 w = cos(z) ise w ′ = − sin(z)

3 (w1w2)′ = w ′1w2 + w1w
′
2
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Analitik Fonksiyon

Bir f (z) fonksiyonu D bölgesinde tek değerli ve sonsuz defa
türevi alınabiliyorsa f (z) bu bölgede analitik fonksiyondur.

f (z) = u(x , y) + iv(x , y) kompleks fonksiyonunun analitik
olması için aşağıdaki iki Cauchy-Riemann koşulu gerekli ve
yeterlidir.

1
∂f
∂x ve ∂f

∂y kısmi türevleri (veya ∂f
∂z ) sürekli olmalıdır.

2
∂u
∂x = ∂v

∂y ve ∂u
∂y = −∂v

∂x şartları (veya ∂f
∂z∗ = 0)

sağlanmalıdır.

İkinci şartın birinci eşitliğinin x türevini ve ikinci eşitliğin y
türevini alıp taraf tarafa toplarsak ∂2u

∂x2 + ∂2u
∂y2 = 0 buluruz. x ve

y türevlerinin yerini değiştirerek ∂2v
∂x2 + ∂2v

∂y2 = 0 elde ederiz.

Yani, u(x , y) ve v(x , y) fonksiyonları 2-boyutlu Laplace
denklemini sağlarlar. O nedenle, u ile v fonksiyonlarına
“harmonik fonksiyonlar” denir.
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Bazı Temel Kompleks Fonksiyonlar 1

Polinomlar: f (z) = c0 + c1z + c2z
2 + · · ·+ cnz

n fonksiyonu
n. dereceden polinomdur. Her z için analitiktir.
Üstel Fonksiyonlar: f (z) = ez = ex+iy = ex(cos y + i sin y)
Her z için analitiktir.
Trigonometrik Fonksiyonlar: Euler formülü yardımıyla

sin z =
e iz − e−iz

2i
ve cos z =

e iz + e−iz

2

Hem sin z hem de cos z fonksiyonu her z için analitiktir.
Hiperbolik Fonksiyonlar: Euler formülü yardımıyla

sinh z =
ez − e−z

2
ve cosh z =

ez + e−z

2

Her iki fonksiyon da her z için analitiktir. Özellikler;

• cos2 z + sin2 z = 1

• cosh2 z−sinh2 z = 1

• cos(ix) = cosh x , x ∈ R
• sin(iy) = i sinh y , y ∈ R
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Bazı Temel Kompleks Fonksiyonlar 2

Logaritma Fonksiyonları: ln z = ln
(
re iθ
)

= ln r + iθ
Ancak kompleks z-düzleminde argümanı 2π’nin tam katı kadar
artırdığımızda aynı noktayı elde ederiz.

ln z = ln r + i(θ + 2πk), k = 0, 1, 2, · · ·

Bu fonksiyon tek-değerli olmadığı için analitik değildir. Bu
fonksiyon sonsuz katlıdır, yani sonsuz tane k değeri (aynı z
değeri) için sonsuz tane farklı ln z değeri veriyor.
Kesirli (Rasyonel) Fonksiyonlar: P(z) ve Q(z) iki analitik
fonksiyon olmak üzere

f (z) =
P(z)

Q(z)

rasyonel fonksiyonu Q(z) 6= 0 olan noktalarda analitik olurlar.

z1/n Türünde Fonksiyonlar: n > 0 bir tamsayı olmak üzere
f (z) = z1/n fonksiyonu n-katlı olduğu için analitik değildir.
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Örnek: Analitik Fonksiyon Olabilir mi?

Bir kompleks fonksiyonun reel kısmı Ref (z) = 4x2y + xey ise
f (z)’nin analitik olamayacağını gösteriniz.

Çözüm: u = 4x2y + xey biliyoruz. Cauchy-Riemann
koşullarını yazalım.

∂v

∂y
=
∂u

∂x
= 8xy + ey ⇒ ∂

∂x

(
∂v

∂y

)
= 8y

∂v

∂x
= −∂u

∂y
= −4x2 − xey ⇒ ∂

∂y

(
∂v

∂x

)
= −xey

Burada
∂2v

∂x∂y
6= ∂2v

∂y∂x

olduğu için f (z) analitik olamaz.

Dikkat! ∂2u
∂x∂y = ∂2u

∂y∂x olduğunu kontrol ediniz.
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Örnek: Analitik Fonksiyonu Bulun

Bir kompleks fonksiyonun reel kısmı Ref (z) = ex cos y − x ise
f (0) = 3 koşulunu sağlayan analitik f (z)’yi bulun.

Çözüm: u = ex cos y − x biliyoruz. İlk Cauchy-Riemann
koşulunu kullanalım, ∂v

∂y = ∂u
∂x = ex cos y − 1. O halde,

v =

ˆ
(ex cos y − 1)dy = ex sin y − y + C (x)

Şimdi ikinci C-R koşulunu, ∂v
∂x = −∂u

∂y , kullanalım.

ex sin y +
dC

dx
= ex sin y ⇒ dC

dx
= 0 ⇒ C (x) = C0

Böylece, f (z) = u + iv = ex cos y − x + i(ex sin y − y + C0) =
ex(cos y+i sin y)−(x+iy)+iC0 = exe iy−z+iC0 = ez−z+iC0.

Burada f (0) = 3 ise iC0 = 2 olur. Sonuçta, f (z) = ez − z + 2

buluruz. Dikkat! Burada ∂2v
∂x∂y = ∂2v

∂y∂x .
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Kompleks İntegraller 1

Eğer f (z) fonksiyonu kompleks
düzlemde bir R bölgesinde
sürekli ve tek-değerli bir
fonksiyon ise f (z)’nin C eğrisi
boyunca integralini şöyle
tanımlarız.ˆ

C
f (z)dz =

ˆ
C

(u + iv)(dx + idy)

Soru:
´
C z dz kompleks

integralini şekildeki (a)
C eğirisi, (b) C1 eğirisi,
(c) C2 eğirisi, (d) kapalı
C + C1 + (−C2) eğirisi
üzerinden hesaplayınız.
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Kompleks İntegraller 2

Çözüm: (a) C yörüngesi y = 1 ve x : 1→ 3 doğru parçasıdır.
O halde, dy = 0 ve z = x + i ve dz = dx olur.

ˆ
C
z dz =

ˆ 3

1
(x + i)dx =

(
x2

2
+ ix

)3

1

= 4 + 2i

(b) C1 yörüngesi x = 3 ve y : 1→ 3 doğru parçasıdır. O
halde, dx = 0 ve z = 3 + iy ve dz = idy olur.

ˆ
C1

z dz =

ˆ 3

1
(3 + iy)idy =

(
3iy − y2

2

)3

1

= −4 + 6i

(c) C2 yörüngesi y = x ve x : 1→ 3 doğru parçasıdır. O
halde, dy = dx ve z = x + ix ve dz = (1 + i)dx olur.

ˆ
C2

z dz =

ˆ 3

1
(1 + i)2x dx = 2i

(
x2

2

)3

1

= 8i

(d)
´
C+C1−C2

z dz = (4 + 2i) + (−4 + 6i) + (−8i) = 0
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Kompleks İntegraller 3: Cauchy Teoremi

Önceki sorunun (d) şıkkında bulduğumuz sonuç geneldir.
Bunu Cauchy teoremi olarak veriyoruz.

Kompleks düzlemde D bölgesinde ve bunu çevreleyen kapalı C
eğrisi üzerinde analitik olan f (z) fonksiyonunun bu C kapalı
eğrisi üzerinden integrali her zaman sıfırdır.

˛
C
f (z) dz = 0
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Sorular ve Çözümler

Soru: e3zi = −1 + i bağıntısını sağlayan tüm z değerlerini
bulunuz.

Çözüm: Öncelikle −1 + i kompleks sayısını re i(θ+2πk)

biçiminde yazalım.

r =
√

12 + (−1)2 =
√

2 , θ = arctan

(
1

−1

)
=

3π

4

O halde

e3zi = 21/2e i(
3π
4

+2πk) ⇒ 3zi =
1

2
ln 2 + i

(
3π

4
+ 2πk

)
yazabiliriz. Son olarak z yi çekersek sonuç şu olur.

z =

(
π

4
+ k

2π

3

)
− i

6
ln 2 , k = 0,±1,±2, · · ·
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Sorular ve Çözümler

Soru: Reel kısmı u(x , y) = e−x sin y − x
x2+y2 olan f (z)

kompleks fonksiyon, analitik olabilir mi? Gösteriniz. Eğer
”evet” ise, analitik fonksiyonu bulunuz.

Çözüm: f (z) = u(x , y) + iv(x , y) fonksiyonunun analitik
olabilmesi için hem u hem de v iki-boyutlu Laplace denklemini
sağlamalıdır. Kontrol edelim.

∂u

∂x
= −e−x sin y +

x2 − y2

(x2 + y2)2
⇒

∂2u

∂x2
= e−x sin y +

6xy2 − 2x3

(x2 + y2)3

∂u

∂y
= e−x cos y +

2xy

(x2 + y2)2
⇒

∂2u

∂y2
= −e−x sin y +

2x3 − 6xy2

(x2 + y2)3
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Sorular ve Çözümler

Evet! Gerçekten ∂2u
∂x2 + ∂2u

∂y2 = 0 sağlanıyor. O halde, analitik

f (z) vardır. Şimdi, v(x , y) belirlemek için Cauchy-Riemann
şartlarını kullanalım.

∂v

∂x
= −∂u

∂y
⇒ v(x , y) = −

ˆ
∂u

∂y
∂x

v(x , y) = −
ˆ [

e−x cos y +
2xy

(x2 + y2)2

]
∂x

= e−x cos y +
y

x2 + y2
+ C (y)

x e göre kısmi türevden integrale geçtiğimiz için integral sabiti
y ye bağlı olabilir: C = C (y). Şimdi de C nin y bağımlılığını
belirlemek için Cauchy-Riemann şartlarından diğerini
kullanalım:
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Sorular ve Çözümler

∂v

∂y
=
∂u

∂x
→ dC (y)

dy
= 0

Yani C (y) niceliği y ’ye bağlı değil, gerçekten bir sabitmiş! O
halde,

f (z) = e−x sin y − x

x2 + y2
+ i

[
e−x cos y +

y

x2 + y2

]
+ C

= e−x i(cos y − i sin y)− x − iy

x2 + y2
+ C

= ie−xe−iy − x − iy

(x + iy)(x − iy)
+ C

= ie−(x+iy) − 1

x + iy
+ C

= ie−z − 1

z
+ C
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Sorular ve Çözümler

Soru: f (z) = 1/z fonksiyonuna göre z-düzlemindeki y = 1/4
doğrusunun w -düzlemindeki tasvirini bulunuz ve şekil çiziniz.
z-düzleminde şekilde gösterilen taralı şerit şeklindeki bölge
w -düzleminde hangi bölgeye haritalanır? Şekil çizerek
gösteriniz.

Çözüm: Öncelikle u ile v ’yi x ve y cinsinden yazalım.

w =
1

z
⇒ u + iv =

1

x + iy
⇒ u + iv =

x − iy

x2 + y2
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Sorular ve Çözümler

O halde,

u =
x

x2 + y2
, v =

−y
x2 + y2

Her ikisinde de y = 1/4 yazalım.

u =
x

x2 + 1/16
, v =

−1/4

x2 + 1/16

Şimdi de taraf tarafa bölelim.

x =
−u
4v

Bu sonucu bir üst satırda u’da veya v ’de kullanırsak u ile v
arasında

u2 + v2 + 4v = 0

bağıntısını elde ederiz. Bunu da tam kare biçiminde yazarsak
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Sorular ve Çözümler

u2 + (v + 2)2 = 22

sonucuna ulaşırız ki bu denklem merkezi (u, v) = (0,−2)
noktasında olan 2 br yarıçaplı bir çemberi tanımlar. Buna göre
şeridin iç bölgesi bu dairenin dış bölgesine haritalanmıştır.
Aşağıdaki şekle bakınız.
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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BÖLÜM 4

İNTEGRAL HESAPLARI
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Temel İntegral Bilgimiz

• Toplama işleminin ters işlemi çıkarma işlemidir.

• Çarpma işleminin ters işlemi bölme işlemidir.

• Türev işleminin ters işlemi integral işlemidir.

• Geometrik olarak türev, bir eğrinin (ya da fonksiyonun)
teğetinin eğimini verir.

• Geometrik olarak integral, bir eğriyle (ya da fonksiyonla)
eksen arasında kalan bölgenin alanını hesaplatır.

• c keyfi bir sabit olmak üzere
f (x) = 2x3 − 4x2 + c ise df

dx = 6x2 − 8x

•
´

df
dx dx =

´
(6x2 − 8x) dx = 2x3 − 4x2 + c = f (x)

•
´
dx = x + c veya

´
dt = t + c veya

´
dx2 = x2 + c.

Yani,
´
d(birsey) = (birsey) + c

• a = sbt olmak üzere
´
dv =

´
a dt ⇒ v = v0 + at

burada v0 integral sabitidir.
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İntegral Alma Teknikleri

İntegral hesaplarını kabaca aşağıdaki şekilde gruplayabiliriz.

Belirsiz İntegraller Belirli İntegraller
Değişken atama Belirsiz integralde sınırları yerleştirme
Kısmi integrasyon Bilinen integrallerin kullanılması

Rezidü teoreminin kullanılması

Örnek: Değişken Atama Yöntemi

I =
´

x dx
x2+1

=?

Burada x2 + 1 = y diyelim. 2x dx = dy olduğu için
x dx = dy/2 yazarız.

I =
1

2

ˆ
dy

y
=

1

2
ln y + c =

1

2
ln (x2 + 1) + c

Burada c ’ye integral sabiti denir.
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Örnek: Kısmi İntegrasyon

I =

ˆ
x2 sin x dx =?

Çözüm: d(uv) = du v + u dv ise
´
u dv = uv −

´
v du

eşitliğine kısmi integrasyon denir.

Sorumuzda u = x2 ve dv = sin x dx dersek
du = 2x dx ve v = − cos x . O halde, I şöyle olur.

I = −x2 cos x + 2

ˆ
x cos x dx

Sağdaki ikinci terimde tekrar kısmi integrasyon yapalım.
u = x ve dv = cos x dx dersek
du = dx ve v = sin x olur.

I = −x2 cos x + 2

(
x sin x −

ˆ
sin x dx

)
= −x2 cos x + 2x sin x + 2 cos x + c
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Örnek: Belirsiz İntegralde Sınırları Koy

I =

ˆ 1

0

dx√
1− x2

=?

Önce bunu belirsiz integral olarak hesap edelim. Değişken
dönüşümü yaparak hesaba başlayabiliriz.

x = sin θ dersek dx = cos θ dθ ve 0 ≤ x ≤ 1 iken 0 ≤ θ ≤ π/2
olur.

I =

ˆ π/2

0

cos θ dθ√
1− sin2 θ

Burada cos2 θ + sin2 θ = 1 ise cos2 θ = 1− sin2 θ kullanalım.

I =

ˆ π/2

0

cos θ dθ

cos θ
=

ˆ π/2

0
dθ = θ

∣∣∣π/2

0
=
π

2
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Bilinen İntegrallerin Kullanılması

Örnek: Koordinat Sistemini Değiştirme 1

I =

ˆ ∞
0

e−x
2
dx =?

Çözüm: 0 ≤ x ≤ ∞ olduğu için bu integral, xy -düzleminin
sağ yarı bölgesinde çizgisel integraldir.

x → y yazalım; I =
´∞

0 e−y
2
dy . Bu da xy -düzleminin üst yarı

bölgesinde çizgisel integraldir. O halde,

I 2 =

ˆ ∞
0

ˆ ∞
0

e−(x2+y2) dxdy

Bu integral, xy -düzleminin sağ üst çeyrek bölgesinde yüzey
integralidir. Kutupsal koordinatlara geçelim.

x = r cos θ , y = r sin θ , dA = (dx)(dy) = (dr)(rdθ)
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Örnek: Koordinat Sistemini Değiştirme 2

Üst sağ çeyrek bölge: 0 ≤ r ≤ ∞ ve 0 ≤ θ ≤ π/2.

I 2 =

ˆ π/2

0

ˆ ∞
0

e−r
2
r drdθ

Burada
´ π/2

0 dθ = π/2 hesap edilir.

I 2 =
π

2

ˆ ∞
0

e−r
2
r dr

Değişken değiştirelim; r2 = u ise rdr = du/2.

I 2 =
π

4

ˆ ∞
0

e−u du = −π
4

(
e−u

)∞
0

=
π

4

Bunun karekökünü alalım.

I =

ˆ ∞
0

e−x
2
dx =

√
π

2
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Örnek: Gauss İntegrali

I =

ˆ +∞

−∞
e−αx

2
dx =? burada α > 0 sabit.

Bu integrali iki integralin toplamı olarak yazalım.

I =

ˆ 0

−∞
e−αx

2
dx +

ˆ +∞

0
e−αx

2
dx

İlk integralde x → −x yazalım.

I = −
ˆ 0

∞
e−αx

2
dx +

ˆ +∞

0
e−αx

2
dx = 2

ˆ +∞

0
e−αx

2
dx

Şimdi de
√
αx = y diyelim. I = 2√

α

´ +∞
0 e−y

2
dy = 2√

α

√
π

2 .

Sonuçta; ˆ +∞

−∞
e−αx

2
dx =

√
π

α
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Örnek: Simetrilerin Kullanımı 1

I =

ˆ +∞

−∞
x5e−αx

2
dx =? burada α > 0 sabit.

İntegrali iki parçaya ayıralım.

I =

ˆ 0

−∞
x5e−αx

2
dx +

ˆ +∞

0
x5e−αx

2
dx

İlk integralde x → −x yazalım.

I =

ˆ 0

∞
(−x)5e−α(−x)2

d(−x) +

ˆ +∞

0
x5e−αx

2
dx

=

ˆ 0

∞
x5e−αx

2
dx +

ˆ +∞

0
x5e−αx

2
dx

= −
ˆ ∞

0
x5e−αx

2
dx +

ˆ +∞

0
x5e−αx

2
dx = 0
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Özel
Fonksiyonlar

Kaynaklar

90/327

Örnek: Simetrilerin Kullanımı 2

En genelde
f (−x) = −f (x) antisimetrik (veya tek) fonksiyon,
g(−x) = +g(x) simetrik (veya çift) fonksiyon olmak üzere

ˆ +a

−a
f (x)dx = 0

ˆ +a

−a
f (x)g(x)dx = 0

ˆ +a

−a
g(x)dx = 2

ˆ +a

0
g(x)dx

ˆ +a

−a
f 2(x)dx = 2

ˆ +a

0
f 2(x)dx

Burada a bir sabit.
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Örnek: Kompleks Değişkenlerin Kullanımı

α pozitif ve λ keyfi sabitler ise

I =

ˆ ∞
0

e−αx cos (λx) dx =?

Burada cos (λx) = Re
[
e iλx

]
yazalım.

I = Re

ˆ ∞
0

e−αxe iλx dx = Re

ˆ ∞
0

e−(α−iλ)x dx

= Re

[
−1

α− iλ
e−(α−iλ)x

]∞
0

= Re

[
−1

α− iλ
e−αx

(
cos(λx) + i sin(λx)

)]∞
0

= Re
1

α− iλ
= Re

α + iλ

α2 + λ2
=

α

α2 + λ2

Bilgi:
´∞

0 xne−αxdx = n!
αn+1 burada n > 0 ve α > 0 sabitler.
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Örnek: İntegralin Parametreye Göre Türevi

I =

ˆ ∞
0

x4e−x
2
dx =?

Önce α parametresine bağlı bir integral tanımlayalım.

I (α) =

ˆ ∞
0

x4e−αx
2
dx öyle ki I (1) = I

Şu integrali biliyoruz;
´∞

0 e−αx
2
dx = 1

2

√
π
α .

Bu eşitliğin α’ya göre iki defa kısmi türevini alalım.

∂2

∂α2

(ˆ ∞
0

e−αx
2
dx

)
=

∂2

∂α2

(
1

2

√
π

α

)
ˆ ∞

0
x4e−αx

2
dx =

3

8

√
π

α5

Sonuçta,

I (α) =
3

8

√
π

α5
⇒ I (1) =

ˆ ∞
0

x4e−x
2
dx =

3
√
π

8
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Örnek: Kareye Tamamlama 1

a pozitif ve b keyfi sabitler olsun. Hatta b saf sanal bile
olabilir; yani b → ib olabilir.

I =

ˆ +∞

−∞
e−ax

2+bxdx =?

Burada üssüyü düzenleyelim.

−ax2 + bx = −a
(
x2 − b

a
x

)
= −a

[(
x − b

2a

)2

−
(

b

2a

)2
]

= −a
(
x − b

2a

)2

+
b2

4a

Bunu integrale yerleştirelim.



Giriş
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Örnek: Kareye Tamamlama 2

I =

ˆ +∞

−∞
e

[
−a(x− b

2a)
2
+ b2

4a

]
dx

= e
b2

4a

ˆ +∞

−∞
e−a(x−

b
2a)

2

dx

Değişken değiştirelim; x − b
2a = y ise dx = dy ve

−∞ ≤ y ≤ +∞.

I = e
b2

4a

ˆ +∞

−∞
e−ay

2
dy

Buradaki Gauss integralinin sonucunu biliyoruz.

I =

ˆ +∞

−∞
e−ax

2+bxdx =

√
π

a
eb

2/4a
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Örnek: Sabit Vektörlü İntegral 1

µ pozitif, A keyfi sabitler ve ~k sabit bir vektör olsun.

I =

ˆ
A

r
e−µre i

~k.~rd3~r =?

Burada sadece bir tane integral işareti görsek de d3~r terimi bu
inetgralin üç katlı olduğunu gösterir. İntegrantın içinde r
gördüğümüz için küresel koordinatlarda çalışırız.

d3~r = (dr)(rdθ)(r sin θdφ) = (r2dr)(sin θdθdφ) = r2drdΩ

Burada dΩ’ya katı açı elemanı ve d3~r hacim elemanı denir.

I = A

ˆ ∞
0

dr
r2

r
e−µr

ˆ π

0
dθ sin θe i

~k.~r

ˆ 2π

0
dφ
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Örnek: Sabit Vektörlü İntegral 2

R3 uzayında eksen takımını seçmekte serbestiz. Eğer sabit bir
vektör ~k varsa, z-eksenini bu vektöre paralel seçmek işlemleri
çok sadeleştirir ama genellikten hiçbir şey kaybettirmez.

Böylece, z-ekseni ‖ ~k olduğu için ~k .~r = kr cos θ olur.

I = A

ˆ ∞
0

dr re−µr
ˆ π

0
dθ sin θe ikr cos θ

ˆ 2π

0
dφ

Burada φ integrali kolayca Iφ =
´ 2π

0 dφ = 2π çıkar.

θ integralinde değişken dönüşümü yapalım; cos θ = u ise
sin θdθ = −du

Iθ =

ˆ π

0
dθ sin θe ikr cos θ = −

ˆ −1

+1
due ikru

=
1

ikr

[
e ikru

]u=+1

u=−1
=

2

kr

e ikr − e−ikr

2i
=

2

kr
sin(kr)



Giriş
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Örnek: Sabit Vektörlü İntegral 3

Bu iki sonucu integralimize yerleştirelim.

I =
4πA

k

ˆ ∞
0

dr e−µr sin(kr)

Burada diğer tüm parametreler reel olduğu için
sin(kr) = Im[e ikr ] kullanabiliriz.

I =
4πA

k
Im

ˆ ∞
0

dr e−µre ikr

=
4πA

k
Im

µ+ ik

µ2 + k2
=

4πA

k

k

µ2 + k2

=
4πA

µ2 + k2

Burada k ile ~k ’nin boyunu gösteriyoruz.
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Sorular ve Çözümler

Soru: Aşağıdaki integrali hesaplayınız.

I =

ˆ ∞
0

sin x

x
dx

Çözüm: I ’yı reel α parametresinin bir fonksiyonu olarak
yazalım.

I (α) =

ˆ ∞
0

sin x

x
e−αxdx

O halde, I = I (0) olur. Yani, önce I (α)’yı hesaplayacağız. En
son, α = 0 yerleştirerek cevabı elde edeceğiz. I (α)’yı hesap
edebilmek için önce I (α)’nın α’ya göre türevini alalım.

dI (α)

dα
= −
ˆ ∞

0
sin xe−αxdx
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Sorular ve Çözümler

dI (α)

dα
= −
ˆ ∞

0

(
Im e ix

)
e−αxdx = −Im

ˆ ∞
0

e ixe−αxdx

= −Im

ˆ ∞
0

e−(α−i)xdx = −Im
1

α− i
= − 1

α2 + 1

Böylece I (α)’yı hesaplarız.

I (α) = −
ˆ

dα

α2 + 1
= C − arctanα

İntegral sabiti C ’yi belirlemek için I (∞) = 0 kullanırız;
0 = C − arctan (∞) ise C = π/2. Böylece,

I = I (0) =
π

2
− arctan (0) =

π

2
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Özel
Fonksiyonlar

Kaynaklar

100/327

Sorular ve Çözümler

Soru: Aşağıdaki integrali hesaplayınız.

I =

ˆ ∞
0

x2e−3x2
dx

Çözüm: Önce α > 0 sabiti cinsinden bilindik bir integral
yazalım.

Iα =

ˆ ∞
0

x2e−αx
2
dx = − ∂

∂α

ˆ ∞
0

e−αx
2
dx

O halde, I3 = I olur. Yani, önce Iα integralini hesaplayacağız.
En son, α = 3 yerleştirerek cevabı elde edeceğiz.

Iα = − ∂

∂α

ˆ ∞
0

e−αx
2
dx = − ∂

∂α

(
1

2

√
π

α

)
=

1

4α

√
π

α

Burada α = 3 yerleştirerek cevaba ulaşırız.ˆ ∞
0

x2e−3x2
dx =

1

12

√
π

3
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BÖLÜM 5

MATRİSLER
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Matris Nedir?

Eski Latince’de matrix, matric ”rahim” sözcüğünden, yeni
Latince’de matrix ”içi boş kalıp, matematikte matris”
sözcüğünden alıntıdır.

Bugün bizim için matris, sayıların veya terimlerin diktörtgen
çerçeve içine dizilmiş halidir; Dizgi, diziliş, tablo.

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

... Aij
...

Am1 Am2 · · · Amn


Burada Aij ’lere A matrisinin elemanları veya bileşenleri denir.
Bu matris m × n matristir, yani m tane satır ve n tane sütun
vardır; 1 ≤ i ≤ m ve 1 ≤ j ≤ n.
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Matrislerde Toplama ve Çarpma

Eğer m = n ise A matrisine kare matris adı verilir.

Not: Aij ∈ R veya Aij ∈ C olabilir.

(A + B)ij = Aij + Bij

(AB)ij =
∑
k

AikBkj

(λA)ij = λAij burada λ ∈ C

Notlar:

1 AB 6= BA çarpma komutatif olmayabilir.

2 AB’de A’nın satırı ile B’nin sütunu çarpılır.

3 AB’nin tanımlı olması için A’nın sütun sayısı ile B’nin
satır sayısı aynı olmalıdır.
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Sıfır Matrisi ve Birim Matris

Sıfır Matrisi: Bütün elemanları 0 olan matris.

0 =


0 0 · · · 0
0 0 · · · 0
...

... 0
...

0 0 · · · 0


Birim matris: Köşegen elemanları 1 diğer elemanları sıfır olan
matris.

I =


1 0 · · · 0
0 1 · · · 0
...

... δij
...

0 0 · · · 1


Yani, Iij = δij Kronecker deltası
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Örnek: İki Matrisin Toplamı ve Çarpımı

A =

(
2 i
0 1

)
ve B =

(
1 −2
3 −i

)
ise (a) 6iA =? (b) A + B =? (c) AB =?

Çözüm: (a) 6iA =

(
12i −6
0 6i

)
(b) A + B =

(
3 −2 + i
3 1− i

)
(c) AB =

(
2 i
0 1

) (
1 −2
3 −i

)

=

(
(2)(1) + (i)(3) (2)(−2) + (i)(−i)
(0)(1) + (1)(3) (0)(−2) + (1)(−i)

)
=

(
2 + 3i −3

3 −i

)
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler

Özel
Fonksiyonlar

Kaynaklar

106/327

Temel Bazı İşlemler

Bir matriste aşağıdaki temel işlemler tanımlıdır.

Matris Bileşenler Örnek

A Aij

(
1 i

1 + i 2

)
Transpoz AT

(
AT
)
ij

= Aji

(
1 1 + i
i 2

)
Kompleks eşlenik A∗ (A∗)ij = A∗ij

(
1 −i

1− i 2

)
Hermitsel eşlenik
veya adjoint A† =(
AT
)∗

= (A∗)T

(
A†
)
ij

= (Aji )
∗

(
1 1− i
−i 2

)
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Matrisin Determinantı 1

2× 2 matrisin determinatı

detA = det

(
A11 A12

A21 A22

)
=

∣∣∣∣A11 A12

A21 A22

∣∣∣∣ = A11A22 − A12A21

3× 3 matrisin determinatı∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣ = A11

∣∣∣∣A22 A23

A32 A33

∣∣∣∣− A12

∣∣∣∣A21 A23

A31 A33

∣∣∣∣
+ A13

∣∣∣∣A21 A22

A31 A32

∣∣∣∣
En genelde n× n matrisin determinantını şöyle ifade edebiliriz.

detA =
n∑

i=1

(−1)1+iA1iMinör[A1i ]
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Matrisin Determinantı 2

Burada Minör[A1i ] niceliği A matrisinin 1-inci satırı ve i-yinci
sütünu silinerek elde edilen (n − 1)× (n − 1) altmatrisin
determinantıdr.

Not: A matrisinin 1-inci satırı olmak zorunda değil.
Satırlardan birini alabiliriz. Hatta herhangi bir sütunu alarak
da determinantı yazabiliriz.

Özellikler

1 Bir matrisin iki satırı veya iki sütunu yer değiştirirse,
determinatın işareti değişir.

2 Bir matrisin iki satırı veya iki sütunu aynıysa, determinatı
sıfırdır.

3 det(ABC ) = (detA)(detB)(detC )

4 det
(
AT
)

= detA

5 det
(
A†
)

= (detA)∗
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Matrisin İzi

A matrisinin köşegeni üzerindeki elemanların toplamına A
matrisinin izi denir ve Tr ile gösterilir. İngilizce trace: iz
demektir.

TrA = A11 + A22 + · · ·+ Ann =
n∑

i=1

Aii =
n∑

i=1

n∑
j=1

δijAij

Özellikler:

1 Tr(AB) = Tr(BA)

2 Tr(ABC ) = Tr(CAB) = Tr(BCA)

3 Tr
(
A†
)

= (TrA)∗
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Matrisin Tersi 1

A matrisinin tersi A−1 aşağıdaki bağıntıyla tanımlıdır.

A−1A = AA−1 = I ⇒
n∑

k=1

(
A−1

)
ik
Akj = δij

Burada Akj ve δij içindeki n2 tane sayıyı biliyoruz ama
(
A−1

)
ik

içinde n2 tane bilinmeyen var. Bu n2 tane bilinmeyeni olan n2

tane denklem çözüldüğünde aşağıdaki pratik sonuca ulaşılır.

(
A−1

)
ij

=
(−1)i+j

detA
Minör[Aji ]

Dikkat! Soldaki ij dizilişine karşın sağda ji dizilişi var.
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Matrisin Tersi 2

Minör[Aji ]: A matrisinin j-yinci satırını ve i-yinci sütununu
silerek elde edilen altmatrisin determinantıdır. “Minör” yerine
bazen “kofaktör” de denir.

Not: Bazı kitaplarda (−1)i+jMinör[Aji ] terimine Minör[Aji ]
yazar. Yani, ±1 çarpanı minör tanımı içine konulur.

Özellikler:

1 detA = 0 ise A−1 yoktur. Bu durumda A’ya tekil matris
denir.

2 (ABC )−1 = C−1B−1A−1

3 det
(
A−1A

)
= det I ⇒ det

(
A−1

)
det(A) = 1

Böylece, detA−1 = 1/detA
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Özel
Fonksiyonlar

Kaynaklar

112/327

Örnek: Matrisin Tersi 1

A =

2 i 0
3 1 5
0 −i −2

 ise A−1 =?

Çözüm: Önce determinantı hesap edelim.

detA = (2)

∣∣∣∣ 1 5
−i −2

∣∣∣∣− (i)

∣∣∣∣3 5
0 −2

∣∣∣∣+ (0)

∣∣∣∣3 1
0 −i

∣∣∣∣
= (2)(−2 + 5i)− (i)(−6− 0) + 0

= −4 + 16i

detA 6= 0 olduğu için A−1 vardır.

Şimdi de minörleri hesap edelim.

Min[A11] =

∣∣∣∣ 1 5
−i −2

∣∣∣∣ = −2 + 5i
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Örnek: Matrisin Tersi 2

Min[A12] =

∣∣∣∣3 5
0 −2

∣∣∣∣ = −6 , Min[A13] =

∣∣∣∣3 1
0 −i

∣∣∣∣ = −3i

Min[A21] =

∣∣∣∣ i 0
−i −2

∣∣∣∣ = −2i , Min[A22] =

∣∣∣∣2 0
0 −2

∣∣∣∣ = −4

Min[A23] =

∣∣∣∣2 i
0 −i

∣∣∣∣ = −2i , Min[A31] =

∣∣∣∣ i 0
1 5

∣∣∣∣ = 5i

Min[A32] =

∣∣∣∣2 0
3 5

∣∣∣∣ = 10 , Min[A33] =

∣∣∣∣2 i
3 1

∣∣∣∣ = 2− 3i

Bu sonuçları
(
A−1

)
ij

= (−1)i+j

detA Minör[Aji ] bağıntısına
yerleştirelim.
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Örnek: Matrisin Tersi 3

A−1 =
1

detA

 Min[A11] −Min[A21] Min[A31]
−Min[A12] Min[A22] −Min[A32]
Min[A13] −Min[A23] Min[A33]



Sonuçta, A =

2 i 0
3 1 5
0 −i −2

 matrisinin tersi yazılır.

A−1 =
1

−4 + 6i

−2 + 5i 2i 5i
6 −4 −10
−3i 2i 2− 3i


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İlave Matris Özellikleri

1 Eğer A∗ = A ise A reel matristir.

2 Eğer A∗ = −A ise A saf sanal matristir.

3 Eğer AT = A ise A simetrik matristir.

4 Eğer AT = −A ise A anti-simetrik matristir.

5 Eğer A† = A ise A hermitsel matristir.

6 Eğer A† = −A ise A anti-hermitsel matristir.

7 Eğer AT = A−1 ise A ortogonal (dik) matristir.

8 Eğer A† = A−1 ise A üniter (birimsel) matristir.

9 Eğer i 6= j için Aij = 0 (veya Aij = λiδij) ise A köşegen
matristir.

10 Eğer A2 = A ise A idempotent (eşgüçlü) matristir.
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Vektörlerin Matris Gösterimi 1

~A = Ax ı̂+ Ay ̂+ Az k̂ =
(
ı̂ ̂ k̂

)Ax

Ay

Az


Koordinat sistemi değişmediği sürece baz vektörlerimiz
değişmiyordu. Bu durumda bu uzaydaki bütün vektörleri
sadece bileşenleri ile temsil edebiliyorduk.

~A = (Ax ,Ay ,Az) ≡

Ax

Ay

Az


İki vektörün skaler çarpımını yazalım.

~A. ~B = AxBx + AyBy + AzBz =
(
Ax Ay Az

)Bx

By

Bz


O halde,

~A. ~B = ~B. ~A ⇒ ATB = BTA
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Vektörlerin Matris Gösterimi 2

Not: Eğer vektörler kompleks vektörlerse skaler çarpımda sıra
önemlidir.

~A. ~B = A†B ve ~B. ~A = B†A ⇒ ~A. ~B 6= ~B. ~A

Örnek: ~A =

1
i
2

 ve ~B =

 i
0
1

 olsun.

~A. ~B = A†B =
(
1 −i 2

) i
0
1

 = 2 + i

~B. ~A = B†A =
(
−i 0 1

)1
i
2

 = 2− i

Özellik: ~A. ~B =
(
~B. ~A
)∗
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Vektörlerin Matris Gösterimi 3

İki vektörün vektörel çarpımını determinat yardımıyla
yazabiliriz.

~A× ~B =

∣∣∣∣∣∣
ı̂ ̂ k̂
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
= ı̂(AyBz − AzBy ) + ̂(AzBx − AxBz) + k̂(AxBy − AyBx)

Benzer olarak vektörün rotasyonelini de yazabiliriz.

~∇× ~A =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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Lineer Koordinat Dönüşümleri 1

Somut bir örnek olarak R2’de iki tane kartezyen koordinat
sistemi (eksen takımı) çizelim.

X ′Y ′ eksen takımı XY eksen takımına göre ters saat yönünde
ϕ kadar dönmüş. Ya da,
XY eksen takımı X ′Y ′ eksen takımına göre saat yönünde ϕ
kadar dönmüş.

Nasıl isterseniz öyle söyleyiniz. Konuların somut olması için
biz birinciyi söyleyeceğiz.
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Lineer Koordinat Dönüşümleri 2

Keyfi bir P noktasının koordinatlarını iki eksen takımında da
yazalım; P : (x , y) ve P : (x ′, y ′).

Şekli inceleyerek üssülü ve üssüsüz koordinatlar arasında
aşağıdaki lineer bağıntıları yazabiliriz.

x ′ = cosϕ x + sinϕ y

y ′ = − sinϕ x + cosϕ y

Bu iki lineer denklemi bir tane matris denklemi olarak
yazabiliriz.(

x ′

y ′

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
x
y

)
“koordinat dönüşümü”

Sağdaki 2× 2 matrise dönüşüm matrisi denir, genellikle R ile
gösterilir ve ortogonal bir matristir; yani R RT = RTR = I.
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Lineer Koordinat Dönüşümleri 3

Koordinatların artış yönünü birim vektörler ile göstermiştik.

ı̂: x koordinatının artış yönü
̂: y koordinatının artış yönü
ı̂′: x ′ koordinatının artış yönü
̂′: y ′ koordinatının artış yönü

O halde,

(
ı̂′ ̂′

)
=
(
ı̂ ̂

)( cosϕ sinϕ
− sinϕ cosϕ

)T

“baz dönüşümü”

Eğer baz vektörleri değişirse, vektörün bileşenleri de değişir.

~A = Ax ı̂+ Ay ̂+ Az k̂ = A′x ı̂
′ + A′y ̂

′ + A′z k̂
′
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Lineer Koordinat Dönüşümleri 4

Şekile bakarak bileşenler arasında bağıntılar yazabiliriz.

A′x = cosϕAx + sinϕAy

A′y = − sinϕAx + cosϕAy

Bu iki lineer denklemi bir tane matris denkemi olarak yazalım.(
A′x
A′y

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
Ax

Ay

)
“vektör dönüşümü”

Ortogonal dönüşümde
∣∣∣~A′∣∣∣ =

∣∣∣~A∣∣∣, yani
√
~A′. ~A′ =

√
~A. ~A
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Lineer Koordinat Dönüşümleri 5

Buna benzer lineer koordinat dönüşümlerini farkında olarak ya
da olmayarak fizik derslerinde kullanırız. Örneğin;

• Eğik düzlem problemlerinde eksenlerden birini eğik
düzlem yüzeyine paralel seçeriz, diğeri de bu yüzeye dik
olur. Bu durumda aşağı doğru olan yerçekimi ivmesini,
gx = 0 ve gy = −g , yeni koordinat sisteminde
g ′x = −g sinϕ ve g ′y = −g cosϕ olarak bileşenşerine
ayırırız. Burada ϕ eğik düzlemin açısıdır.

• Bağıl hareketi incelerken aşağıdaki gibi koordinat
dönüşümleri yaparız. x ′y ′ eksen takımı, xy eksen takımına
göre x-koordinatı yönünde v hızıyla hareket etsin.

x ′ = x − vt

y ′ = y

t = 0 anında iki koordinat sistemin orijinleri çakışacak
şekilde kronometreyi başlattık!
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Matrisin Özdeğerleri ve Özvektörleri 1

Bir kare matris (operatör) bir sütun matrisine (vektöre) etki
ederse onu yeni bir sütun matrisine (vektöre) dönüştürür.7 0 0

0 1 −i
0 i −1

1
i
0

 =

 7
i
−1

 “matris denklemi”

Bu bağıntıyı kısaca ve soyut olarak şöyle yazarız.

A~x = ~y “matris denklemi”

Şimdi özel bir şey isteyelim. Yeni vektör eski vektörle orantılı
olsun. Yani, ~y = λ~x . Burada λ ∈ R veya λ ∈ C bir sabit.



Giriş
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Matrisin Özdeğerleri ve Özvektörleri 2

A~x = λ~x “özdeğer denklemi”

λ: A matrisinin özdeğeri
~x : A matrisinin λ özdeğerli özvektörü

Eğer A matrisi n × n bir matris ise n tane özdeğer olabilir.
Bazen bu özdeğerler çakışık olabilir.

Teori: Hermitsel bir matrisin özdeğerleri reeldir ve farklı
özdeğerlere karşılık gelen özvektörler biri birilerine diktir.

Örnek: Aşağıdaki matrisin özdeğerlerini ve özvektörlerini
bulunuz.

A =

1 0 4
0 1 2i
4 −2i 0


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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Örnek: Matrisin Özdeğer Problemi 1

A† = A olduğu görülüyor. O sebeple, özdeğerleri reel olmalıdır.

Özdeğer denklemini, A~x = λ~x , açıkça yazalım.1 0 4
0 1 2i
4 −2i 0

x
y
z

 = λ

x
y
z


1 0 4

0 1 2i
4 −2i 0

x
y
z

 =

λ 0 0
0 λ 0
0 0 λ

x
y
z


1− λ 0 4

0 1− λ 2i
4 −2i −λ

x
y
z

 =

0
0
0


Bu denklemi soyut olarak (A− λI)~x = 0 şeklinde ifade ederiz.
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Örnek: Matrisin Özdeğer Problemi 2

Eğer det(A− λI) 6= 0 olursa x = y = z = 0, yani ~x = 0, olur.
Bu aşikar çözümü istemiyoruz. O nedenle, det(A− λI) = 0
yapan λ değerlerini buluruz.∣∣∣∣∣∣

1− λ 0 4
0 1− λ 2i
4 −2i −λ

∣∣∣∣∣∣ = (1− λ)(λ+ 4)(λ− 5) = 0

Böylece özdeğerlerimiz λ1 = 1, λ2 = −4, λ3 = 5 olarak çıkar.
Hepsi de reel!

Şimdi her bir λi için ~xi özvektörünü hesap edelim.

İlk olarak λ1 = 1 özdeğerini yukarıda özdeğer denklemine
yerleştirelim.



Giriş
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Örnek: Matrisin Özdeğer Problemi 3

0 0 4
0 0 2i
4 −2i −1

x1

y1

z1

 =

0
0
0


Buradan aşağıdaki üç denklemi yazabiliriz.

4z1 = 0 , 2iz1 = 0 , 4x1 − 2iy1 − z1 = 0

İlk iki denklem aynı sonucu verir; z1 = 0. Bunu üçüncü
denkleme yerleşitiririz; y1 = −2ix1. O halde, ilk
özvektörümüzü yazalım.

~x1 =

 x1

−2ix1

0


Not: Her zaman denklem sayısı bilinmeyen sayısından bir
eksik olur. Son denklem normalizasyondan gelir; |~x | = 1.
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Örnek: Matrisin Özdeğer Problemi 4

~x1 özvektörünü normalize ederek x1’i belirleyelim.

|~x1| = 1 ⇒
(
x1 2ix1 0

) x1

−2ix1

0

 = 1

x2
1 + 4x2

1 = 1 ⇒ x1 = 1/
√

5

En sonunda λ1 = 1 özdeğerine karşılık gelen normalize
özvektörü yazabiliriz.

~x1 =
1√
5

 1
−2i

0


Benzer adımları takip ederek diğer iki normalize özvektörü de
hesaplarız.
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Özel
Fonksiyonlar

Kaynaklar

130/327

Örnek: Matrisin Özdeğer Problemi 5

λ2 = −4 için normalize özvektör ~x2 =
1

3
√

5

 4
2i
−5


λ3 = +5 için normalize özvektör ~x3 =

1

3

2
i
2


Bu üç tane özvektörün ortogonalliklerini (dikliklerini) kontrol
edelim.

~x1. ~x2 =
1

15

(
1 2i 0

) 4
2i
−5

 = 0

~x1. ~x3 =
1

3
√

5

(
1 2i 0

)2
i
2

 = 0
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Örnek: Matrisin Özdeğer Problemi 6

~x2. ~x3 =
1

9
√

5

(
4 −2i −5

)2
i
2

 = 0

Buna göre ~x1, ~x2, ~x3 vektörleri ortonormal bir baz kümesi
oluşturur;

~xi .~xj = δij “ortonormallik”

Teorem: Hermitsel bir matrisin normalize özvektörlerinden
oluşturulan matris, üniter bir matristir.

Örneğin, çözdüğümüz sorunun normalize özvektörlerini
kullanalım.

U =


1√
5

4
3
√

5
2
3

−2i√
5

2i
3
√

5
i
3

0 −5
3
√

5
2
3

 ⇒ U† =


1√
5

2i√
5

0
4

3
√

5
−2i
3
√

5
−5

3
√

5
2
3

−i
3

2
3


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Matrisin Köşegenleştirilmesi 1

Bu iki matrisi çarparsak UU† = I olduğunu görürüz. Yani
U† = U−1 olduğu için U üniter bir matristir.

Teorem: Hermitsel bir A matrisinin normalize
özvektörlerinden oluşturulan U üniter matrisi, U†AU
çarpımıyla A matrisini köşegen yapar ve köşegen üzerinde
A’nın özdeğerleri olur.

Örnek sorumuza uygulayalım.

A′ = U†AU

=


1√
5

2i√
5

0
4

3
√

5
−2i
3
√

5
−5

3
√

5
2
3

−i
3

2
3


1 0 4

0 1 2i
4 −2i 0




1√
5

4
3
√

5
2
3

−2i√
5

2i
3
√

5
i
3

0 −5
3
√

5
2
3


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Matrisin Köşegenleştirilmesi 2

A′ =


1√
5

2i√
5

0
4

3
√

5
−2i
3
√

5
−5

3
√

5
2
3

−i
3

2
3




1√
5

−16
3
√

5
10
3

−2i√
5

−8i
3
√

5
5i
3

0 20
3
√

5
10
3

 =

1 0 0
0 −4 0
0 0 5


Soru: A ile A′ matrislerinin determinanatlarını ve izlerini
hesap ediniz.

detA = −20 = detA′ ve TrA = 2 = TrA′

Soru: U matrisi özvektörleri nasıl dönüştürür?

~x1
′ = U† ~x1 =

1
0
0

 , ~x2
′ = U† ~x2 =

0
1
0

 , ~x3
′ = U† ~x3 =

0
0
1


Bu sonuçlar esasında çok daha geneldir. Koordinat sistemi
değiştiğinde baz vektörlerimiz değişiyordu. Baz vektörler
değişince bir vektörün bileşenleri de değişiyordu. Bu durumda
bir matrisin bileşenleri de değişir.
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Benzerlik Dönüşümü 1

Eski koordinat sisteminde (bazda) A matrisi ~x vektörünü ~y
vektörüne dönüştürsün.

A~x = ~y eski bazda vektör dönüşümü

Not: Buradaki bütün denklemler birer matris denklemidir.

Şimdi S matrisi ile yeni bir baza (koordinat sistemine) geçelim.

~x ′ = S~x ve ~y ′ = S~y koordinat (baz) dönüşümü

Vektör dönüşüm denklemi yeni bazda aşağıdaki gibi olacaktır.

A′~x ′ = ~y ′ yeni bazda vektör dönüşümü

Burada ~x ′, ~y ′ vektörlerini ~x , ~y vektörleri cinsinden yazalım.

A′S~x = S~y ⇒ S−1A′S~x = ~y ⇒ A = S−1A′S
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Benzerlik Dönüşümü 2

O halde, bir koordinat (baz) dönüşümü S , vektörleri

~x ′ = S~x

olarak dönüşürürken, matrisleri

A′ = SAS−1

olarak dönüştürür. Bu dönüşüme benzerlik dönüşümü denir.

detA′ = (detS)(detA)
(
detS−1

)
= (detS)

(
detS−1

)
(detA)

=
[
det
(
SS−1

)]
(detA) = (detI)(detA) = detA

TrA′ = Tr
(
SAS−1

)
= Tr

(
S−1SA

)
= Tr (IA) = TrA∣∣~x ′∣∣2 = ~x ′†~x ′ = (S~x)† (S~x) = ~x†S†S~x = |~x |2 ,

[
S† = S−1 ise

]
Son satırda eğer S†S = I, yani S üniter matris, ise vektörün
boyu (normu) her iki koordinat sisteminde aynı kalır.
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Sorular ve Çözümler

Soru: Aşağıdaki matrisin özdeğerlerini ve her özdeğere karşılık
gelen bire boylandırılmış (normalize) özvektörlerini bulunuz.

A =

0 1 0
1 0 1
0 1 0


Çözüm: Önce özdeğer denklemini hatırlayalım: A~x = λ~x veya
(A− λI)~x = 0 olarak ifade edelim. Bunun matris biçimi şöyle
olur. −λ 1 0

1 −λ 1
0 1 −λ

a
b
c

 = 0

a, b, c bileşenlerinin sıfırdan farklı olması için katsayılar
matrisinin determinantı sıfır olmalıdır.∣∣∣∣∣∣

−λ 1 0
1 −λ 1
0 1 −λ

∣∣∣∣∣∣ = λ(λ2 − 2) = 0 ⇒ λ = 0,±
√

2
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Sorular ve Çözümler

Önce λ1 = −
√

2 özdeğerine karşı gelen ~x1 özvektörünü
bulalım.

√
2 1 0

1
√

2 1

0 1
√

2

 a1

b1

c1

 = 0 ⇒ c1 = a1 =
−b1√

2

Normalizasyon |a1|2 + |b1|2 + |c1|2 = 1.

Birlikte ~x1 =

 −1/2

1/
√

2
−1/2


Şimdi de λ2 = 0 özdeğerine karşı gelen ~x2 özvektörünü
bulalım. 0 1 0

1 0 1
0 1 0

 a2

b2

c2

 = 0 ⇒ c2 = −a2 , b2 = 0
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Sorular ve Çözümler

Normalizasyon |a2|2 + |b2|2 + |c2|2 = 1.

Birlikte ~x2 =

 1/
√

2
0

−1/
√

2


Son olarak λ3 = +

√
2 özdeğerine karşı gelen ~x3 özvektörünü

bulalım. −
√

2 1 0

1 −
√

2 1

0 1 −
√

2

 a3

b3

c3

 = 0 ⇒ c3 = a3 =
b3√

2

Normalizasyon |a3|2 + |b3|2 + |c3|2 = 1.

Birlikte ~x3 =

 1/2

1/
√

2
1/2


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Sorular ve Çözümler

Soru: (a) Aşağıdaki A matrisinin hermitsel olduğunu
gösteriniz. (b) A’nın özdeğerlerini ve her özdeğere karşılık
gelen normalize özvektörü bulunuz. (c) Bu özvektörlerin
ortogonal (dik) olduklarını gösteriniz. (d) Aşağıda verilen ~S
vektörünü normalize ederek bulduğunuz ortonormal vektörler
cinsinden yazınız ve bileşenleri (katsayıları) hesap ediniz.

A =

(
0 −i
i 0

)
ve ~S =

(
i
2

)
Çözüm: (a) Eğer A hermitsel ise A† =

(
AT
)∗

= A olmalıdır.

AT =

(
0 i
−i 0

)
⇒

(
AT
)∗

=

(
0 −i
i 0

)
= A
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Sorular ve Çözümler

(b) Önce özdeğer denklemini hatırlayalım: A~x = λ~x veya
(A− λI)~x = 0 olarak ifade edelim. Bunun matris biçimi şöyle
olur. (

−λ −i
i −λ

)(
a
b

)
= 0

a, b bileşenlerinin sıfırdan farklı olması için katsayılar
matrisinin determinantı sıfır omalıdır.∣∣∣∣−λ −i

i −λ

∣∣∣∣ = λ2 − 1 = 0 ⇒ λ1 = −1, λ2 = +1

Önce λ1 = −1 özdeğerine karşı gelen ~x1 özvektörünü bulalım.(
1 −i
i 1

)(
a1

b1

)
= 0 ⇒ b1 = −ia1

Normalizasyon |a1|2 + |b1|2 = 1. Birlikte ~x1 =
1√
2

(
1
−i

)
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Sorular ve Çözümler

Şimdi de λ2 = +1 özdeğerine karşı gelen ~x2 özvektörünü
bulalım.(

−1 −i
i −1

)(
a2

b2

)
= 0 ⇒ b2 = ia2

Normalizasyon |a2|2 + |b2|2 = 1. Birlikte ~x2 =
1√
2

(
1
i

)
(c) ~x1 ile ~x2 vektörlerinin biri birine dik olması için skaler
çarpımları sıfır olmalıdır.

(~x1, ~x2) = ~x†1 ~x2 =
1√
2

(
1 i

) 1√
2

(
1
i

)
=

1

2
(1 + i2) = 0
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Sorular ve Çözümler

(d) ~S = N

(
i
2

)
burada N normalizasyon katsayısı.

Normalizasyon (~S , ~S) = 1.

N2
(
−i 2

)( i
2

)
= 5N2 ⇒ N =

1√
5
⇒ ~S =

1√
5

(
i
2

)
Şimdi bunu ~x1 ve ~x2 cinsinden yazalım.

~S = c1~x1 + c2~x2

c1 = (~x1, ~S) =
1√
10

(
1 i

)( i
2

)
=

3i√
10

c2 = (~x2, ~S) =
1√
10

(
1 −i

)( i
2

)
=
−i√
10
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Sorular ve Çözümler

Soru: Aşağıda verilen A matrisini düşünelim. (a)
H = 1

2 (A + A†) hermitsel matrisini oluşturunuz. (b) H
matrisinin özdeğerlerinin −1 ve 4 olduğunu gösteriniz. (c) Her
özdeğere karşılık gelen bire boylandırılmış (normalize)
özvektörleri bulunuz. (d) Bu vektörlerin dik olduğunu
gösteriniz.

A =

(
0 4i
0 3 + 2i

)
Çözüm: (a) A† = (A∗)T matrisini oluşturup iki matrisi
toplayacağız.

H =
1

2

[(
0 4i
0 3 + 2i

)
+

(
0 0
−4i 3− 2i

)]
=

(
0 2i
−2i 3

)
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Sorular ve Çözümler

(b) Özdeğer denklemini hatırlayalım: H~x = λ~x veya
(H − λI)~x = 0 olarak ifade edelim. Bunun matris biçimi şöyle
olur. (

−λ 2i
−2i 3− λ

)(
a
b

)
= 0

a ve b bileşenlerinin her ikisinin de sıfır olmaması için
katsayılar matrisinin determinantı sıfır olmalıdır.∣∣∣∣−λ 2i
−2i 3− λ

∣∣∣∣ = λ2−3λ−4 = 0 ⇒ λ1 = −1 ve λ2 = 4
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Sorular ve Çözümler

(c) Önce λ1 = −1 özdeğerine karşı gelen ~x1 özvektörünü
bulalım.(

1 2i
−2i 4

)(
a1

b1

)
= 0 ⇒ a1 = −2ib1

Normalizasyon |a1|2 + |b1|2 = 1. Birlikte ~x1 =
1√
5

(
−2i

1

)
Şimdi de λ2 = 4 özdeğerine karşı gelen ~x2 özvektörünü
bulalım.(
−4 2i
−2i −1

)(
a2

b2

)
= 0 ⇒ b2 = −2ia2

Normalizasyon |a2|2 + |b2|2 = 1. Birlikte ~x2 =
1√
5

(
1
−2i

)
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Sorular ve Çözümler

(d) İki vektörün skaler çarpımı sıfır ise diktirler.

(~x1, ~x2) =
1√
5

(
2i 1

) 1√
5

(
1
−2i

)
=

1

5
(2i − 2i) = 0
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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BÖLÜM 6

DİFERANSİYEL
DENKLEMLER
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Bağımsız ve Bağımlı Değişken

Evrenin yasaları matematik dilinde yazılır. Cebir, bir çok statik
problemi çözmek için yeterlidir.

Ancak, en ilginç doğa olayları, değişim içerir ve değişen
nicelikleri biri birine bağlayan bağıntılar (fonksiyonlar) ile
tanımlanırlar. Örneğin, bir boyutta hareket eden cismin
konumu, x , zaman, t, içinde değişir. O zaman, konum ile
zaman arasında bir bağıntı yazarız.

x = f (t) veya kısaca x = x(t)

burada t bağımsız değişken, x bağımlı değişken (bilinmeyen
fonksiyon) ve f bilinmeyen fonksiyon adını alır.

x ′ ≡ dx

dt
x ’in t’ye göre adi türevi

Aslında, x ’in t’ye göre değişim oranıdır.



Giriş
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Diferansiyel Denklem Nedir?

Tanım: Bir bilinmeyen fonksiyonun türevlerinden en az birini
içeren denklemlere diferansiyel denklem denir.

Örnekler;

1
dx
dt = x2 + t2

burada bağımsız değişken t, bağımlı değişken x

2
d2y
dx2 + 3dy

dx + 7y = 0
burada bağımsız değişken x , bağımlı değişken y

3
d3b
da3 −

(
db
da

)2
+ 7a = 0

burada bağımsız değişken a, bağımlı değişken b

Cebirde çözüm sayılardan oluşur. Diferansiyel denklemde
çözüm fonksiyonlardan oluşur.
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Diferansiyel Denklemin İncelenmesi

Diferansiyel denklemi incelemede üç aşama vardır;

i. Fiziksel olayı tarif eden diferansiyel denklemi bulmak.

ii. Bu diferansiyel denklemi çözmek.

iii. Bulunan çözümü yorumlamak.

Örnek: Gergin bir ip üzerinde hareket eden bir böcek eşit
zaman aralıklarında aynı miktarda ilerlemektedir. Bu
gözlemsel sonucu ifade eden diferansiyel denklemi yazınız,
çözünüz ve yorumlayınız.

Adım 1:
dx

dt
= v burada v bir sabit

Adım 2: x = x0 + vt burada x0 integral sabiti

Adım 3: x0 ilk konum, x son konum
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Örnek: Fonksiyondan Denklem Türetme

Soru: C bir sabit olmak üzere y(x) = Cex
2

fonksiyonunun
sağladığı diferansiyel denklemi bulunuz.

dy

dx
= C2xex

2
= 2x

(
Cex

2
)

= 2xy

dy

dx
− 2xy = 0 diferansiyel denklem

Not: y(x) = Cex
2

fonksiyonuna “bir-parametreli çözüm
ailesi” denir, çünkü her C değeri bir çözüm verir.

y(0) = 1 başlangıç şartını (veya sınır şartını) kullanarak C ’yi
sabitlersek y(x) = ex

2
fonksiyonuna “özel çözüm” denir.

Dikkat! Her diferansiyel denklem bir çözüme sahip olmak
zorunda değildir.(

y ′
)2

+ y2 = −1 burada y ′ ≡ dy/dx

diferansiyel denkleminin reel değerli çözümü yoktur.
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Özel
Fonksiyonlar

Kaynaklar

152/327

Diferansiyel Denklemin Mertebesi, Derecesi

Tanım: Bir diferansiyel denklemin mertebesi, denklemde
görülen en yüksek türevin mertebesidir ve derecesi de en
yüksek mertebeli türevin kuvvetidir. Örneğin;(

y (4)
)3

+ x2y4y (1) + x5y4 = sin x burada y (n) ≡ dny

dxn

Bağımsız değişken x
Bağımlı değişken y
Denklemin mertebesi 4
Denklemin derecesi 3

En genelde n. mertebe bir diferansiyel denklem iki türlü ifade
edilebilir.

F
(
x , y , y ′, y ′′, · · · , y (n)

)
= 0 kapalı biçim

y (n) = G
(
x , y , y ′, y ′′, · · · , y (n−1)

)
normal biçim
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Adi ve Kısmi Diferansiyel Denklem

Tanım: Bilinmeyen fonksiyon yalnızca bir tane bağımsız
değişkene bağlıysa diferansiyel denklem “adi diferansiyel
denklem” adını alır.

Şu ana kadar gördüğümüz tüm diferansiyel denklemler bu
türdendir.

Tanım: Eğer bağımlı değişken iki ya da daha çok bağımsız
değişkenin bir fonksiyonuysa diferansiyel denkleme “kısmi
türevli denklem” veya “kısmi diferansiyel denklem” denir.

Örneğin, k bir sabit olmak üzere

u = u(x , t) ise
∂u

∂t
= k

∂2u

∂x2

kısmi diferansiyel denklemi bir boyutta difüzyon denklemidir.

Dikkat! Bu bölümde hep adi diferansiyel denklemlerle
karşılacağız ve sadece “diferansiyel denklem” diyeceğiz.
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Başlangıç Değer Problemi

Tanım: dy
dx = f (x , y) ve y(x0) = y0 türündeki problemlere

“başlangıç değer problemi” denir.

Örnek: dy/dx = 2x + 3, y(1) = 2 başlangıç değer problemini
çözünüz.

ˆ
dy =

ˆ
(2x + 3)dx ⇒ y(x) = x2 + 3x + C

Burada C keyfi bir sabit olduğu için bu çözüme “bir
parametreli çözüm” veya “genel çözüm” denir.

Başlangıç şartı: y(1) = 2

1 + 3 + C = 2 ⇒ C = −2.

O halde, y(x) = x2 + 3x − 2 çözümüne “özel çözüm” denir.
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Değişkenlerine Ayrılabilen Dif Denklemler 1

Birinci mertebeden diferansiyel denklemlerin genel olarak
çözüm tekniklerine bakacağız.

Eğer dy/dx = H(x , y) denkleminde H(x , y) = g(x)h(y)
şeklinde yazılabiliyorsa bu denkleme “birinci mertebe
değişkenlerine ayrılabilen diferansiyel denklem” denir.

Örnek: dy/dx = −6xy , y(0) = 7, başlangıç değer problemini
çözünüz.

dy = −6xydx ⇒
ˆ

dy

y
=

ˆ
−6xdx ⇒ ln |y | = −3x2 + C

Başlangıç koşulu: y(0) = 7 ise C = ln 7 olur.

ln |y | − ln 7 = −3x2 ⇒ |y |
7

= e−3x2 ⇒ y(x) = 7e−3x2

Bütün x için 7e−3x2
pozitif olduğundan |.| kaldırdık.
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Değişkenlerine Ayrılabilen Dif Denklemler 2

Örnek: dy
dx = 4−2x

3y2−5
denklemini çözünüz.

ˆ (
3y2 − 5

)
dy =

ˆ
(4− 2x) dx

y3 − 5y = 4x − x2 + C kapalı çözüm

Bu iafede x ’in açık bir fonksiyonu olarak y ’ye göre çözülemez.
Bu tür çözümlere “kapalı çözüm” denir.

Bu durumda, çözüm eğrisi şöyle de yazılır.

H(x , y) = x2 − 4x + y3 − 5y = C

Her başlangıç şartı yeni bir C verir. Bunun x − y eksen
takımında grafiği çizilir. Her farklı C için de farklı bir eğri
çizeriz.
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Birinci Mertebe Lineer Dif Denklemler 1

Genel olarak aşağıdaki gibi yazılabilen denkleme

dy

dx
+ P(x)y = Q(x)

birinci mertebe lineer diferansiyel denklem denir.

Not: Her terimde bağımlı değişken y ’nin sadece birinci
kuvveti var.

Çözüm için her terim ρ(x) = e
´
P(x)dx ile çarpılır.

dy

dx
e
´
P(x)dx + P(x)e

´
P(x)dxy(x) = Q(x)e

´
P(x)dx

d

dx

[
y(x)e

´
P(x)dx

]
= Q(x)e

´
P(x)dx

y(x)e
´
P(x)dx =

ˆ [
Q(x)e

´
P(x)dx

]
dx + C

y(x) = e−
´
P(x)dx

{ˆ [
Q(x)e

´
P(x)dx

]
dx + C

}
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar

İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler

Özel
Fonksiyonlar

Kaynaklar

158/327

Birinci Mertebe Lineer Dif Denklemler 2

Örnek: (x2 + 1)dydx + 3xy = 6x denkleminin genel çözümünü
bulunuz.

Denklemi standart formda yazalım; dy
dx + 3x

x2+1
y = 6x

x2+1

İntegral çarpanını hesap edelim.

ρ(x) = e
´

3x
x2+1

dx
= e

3
2

´
2x

x2+1
dx

= e ln(x2+1)
3/2

= (x2 + 1)3/2

Standart formdaki denklemi bununla çarp.

(x2 + 1)3/2 dy

dx
+ 3x(x2 + 1)1/2y = 6x(x2 + 1)1/2

d

dx

[
(x2 + 1)3/2y

]
= 6x(x2 + 1)1/2

(x2 + 1)3/2y =

ˆ
6x(x2 + 1)1/2dx = 3

(x2 + 1)3/2

3/2
+ C

y(x) = 2 + C (x2 + 1)−3/2
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Değişken Dönüşümü Yapmak 1

Birinci mertebe diferansiyel denklemler çoğunlukla
değişkenlerine ayrılamazlar veya lineer olmazlar. Bu
durumlarda denklemi çözülebilecek başka bir denkleme
dönüştürmek işe yarar.

dy

dx
= F (ax + by + c) burada a, b, c sabit

biçimindeki denklemlerde v = ax + by + c değişken dönüşümü
yapmak, denklemleri değişkenelerine ayrılabilir hale getirir.

Örnek: dy
dx = (x + y + 3)2 denklemini çözünüz.

v = x + y + 3 yapalım. y = v − x − 3 ve
dy
dx = dy

dv
dv
dx + ∂y

∂x = dv
dx − 1. Diferansiyel denklem şöyle olur.

dv

dx
− 1 = v2 ⇒

ˆ
dv

1 + v2
=

ˆ
dx ⇒ arctan v + C = x

v = tan(x − C ) ⇒ x + y + 3 = tan(x − C )

y(x) = tan(x − C )− x − 3
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Değişken Dönüşümü Yapmak 2

dy

dx
= F

(y
x

)
biçimindeki denklemlere “homojen diferansiyel denkemler”
denir. Çözüm için v = y/x değişken dönüşümü yapılarak
denklem değişkenlerine ayrılabilir hale getirilir.

Doğrulama: v = y/x ise y = vx olur.

dy

dx
=

dy

dv

dv

dx
+
∂y

∂x
= x

dv

dx
+ v

Diferansiyel denklem aşağıdaki hale gelir.

x
dv

dx
+ v = F (v) ⇒ x

dv

dx
= F (v)− v ⇒ dv

F (v)− v
=

dx

x

Bu değişkenlerine ayrılmış bir diferansiyel denklemdir.
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Değişken Dönüşümü Yapmak 3

dy

dx
+ P(x)y = Q(x)yn , n 6= 0 ve n 6= 1 olan sabit

türündeki denklemlere Bernoulli diferansiyel denklemleri denir.
Çözüm için v = y1−n dönüşümüyle denklem lineer diferansiyel
denklem haline getilir.

Doğrulama: v = y1−n ise y = v
1

1−n olur.

dy

dx
=

dy

dv

dv

dx
+
∂y

∂x
=

1

1− n
v( 1

1−n
−1) dv

dx
+ 0 =

v
n

1−n

1− n

dv

dx

Bunu diferansiyel denkleme yerleştirelim ve düzenleyelim.

v
n

1−n

1− n

dv

dx
+ P(x)v

1
1−n = Q(x)v

n
1−n

dv

dx
+ (1− n)P(x)v = (1− n)Q(x)

Bu da birinci mertebe lineer diferansiyel denklemdir.
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Tam Diferansiyel Denklemler 1

M(x , y)dx + N(x , y)dy = 0 veya
dy

dx
= −M(x , y)

N(x , y)

denkleminde ∂M
∂y = ∂N

∂x sağlanıyorsa bu denkleme “tam
diferansiyel denklem” denir.

Çözüm için soldaki denklemi dF (x , y) = 0 olarak yazabiliriz.
Buradan da F (x , y) = C gibi bir kapalı çözüm elde ederiz.

Burada ∂M
∂y = ∂N

∂x koşulu ∂2F
∂x∂y = ∂2F

∂y∂x anlamına gelir.

Örnek: y3dx + 3xy2dy = 0 denklemini çözünüz.

∂
(
y3
)

∂y
= 3y2 ve

∂
(
3xy2

)
∂x

= 3y2

O halde, bu bir tam diferansiyel denklemdir ve dF (x , y) = 0
olarak yazılabilir.

dF (x , y) = 0 ⇒ ∂F

∂x
dx +

∂F

∂y
dy = 0
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Tam Diferansiyel Denklemler 2

Bunu sorudaki denklemle karşılaştırarak şunu yazarız.

∂F

∂x
= y3 ve

∂F

∂y
= 3xy2

Önce ilk denklemi kullanalım.

∂F

∂x
= y3 ⇒ F (x , y) =

ˆ
y3∂x = xy3 + f (y)

f (y)’yi belirlemek için bunun y ’ye göre türevini alalım ve
yukarıdaki ikinci denkleme eşitleyelim.

∂F

∂y
= 3xy2 +

df

dy
= 3xy2 ⇒ df

dy
= 0 ⇒ f (y) = sbt

Sonuçta, F (x , y) = C kapalı çözümünü açıkça yazabiliriz.

xy3 = C veya x = C/y3
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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İkinci Mertebe Diferansiyel Denklemler

Tanım: F (x , y , y ′, y ′′) = 0 türündeki denkleme “ikinci
mertebe diferansiyel denklem” denir.

Denklemde x veya y açıkça yoksa bir dönüşümle mertebe
indirilir.

y İçermeyen Denklemler

F (x , y ′, y ′′) = 0 denkleminde y ′ = p yazılır, y ′′ = p′ olur.
Şimdi denklem birinci mertebe diferansiyel denklem haline
gelir.

F (x , p, p′) = 0

Önce p(x) bulunur, sonra da y =
´
p(x)dx ile y(x) hesap

edilir.
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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Örnek: y İçermeyen Dif Denk

xy ′′ + 2y ′ = 6x denklemini çözünüz.

Önce y ′ = p ve y ′′ = p′ yazalım.

xp′ + 2p = 6x ⇒ p′ +
2

x
p = 6

Şimdi bu lineer birinci mertebe diferansiyel denklemdir.

İntegral çarpanı ρ = e
´

2
x
dx = e2 ln x = x2 olur.

x2p =

ˆ
6x2dx ⇒ x2p = 2x3+C1 ⇒ p = 2x+C1x

−2

Son olarak y =
´
pdx kullanalım.

y =

ˆ (
2x + C1x

−2
)
dx = x2 − C1x

−1 + C2

Not: İki tane integral sabiti yazdık; C1,C2. Bu geneldir.
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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x İçermeyen Diferansiyel Denklemler

x içermeyen F (y , y ′, y ′′) = 0 türündeki bir denklemde y ′ = p
yazılır, y ′′ = dp

dx = dp
dy

dy
dx = p dp

dy olur. Şimdi denklem birinci
mertebe diferansiyel denklem haline gelir.

F (y , p, dp/dy) = 0

Önce p(y) bulunur, sonra da x =
´ dy

p ile x(y) hesap edilir.

Örnek: yy ′′ = (y ′)2 “nonlineer” diferansiyel denklemi
çözünüz.

y ′ = p ⇒ y ′′ =
dp

dx
=

dp

dy

dy

dx
= p

dp

dy

yp
dp

dy
= p2 ⇒

ˆ
dp

p
=

ˆ
dy

y
⇒ p(y) = C1y

dy

dx
= p = C1y ⇒

ˆ
dy

y
=

ˆ
C1dx

ln y = C1x + lnC2 ⇒ y = C2e
C1x
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2. Mertebe Lineer Diferansiyel Denklemler 1

Tanım: Bağımlı değişkenin sadece sıfırıncı kuvvetini veya
birinci kuvvetini içeren bir diferansiyel denkleme “lineer
diferansiyel denklem” denir.

İkinci mertebeden böyle bir denklem en genelde aşağıdaki gibi
ifade edilebilir.

A(x)y ′′ + B(x)y ′ + C (x)y = F (x)

• F (x) = 0 ise homojen diferansiyel denklem

• F (x) 6= 0 ise homojen olmayan diferansiyel denklem

• A,B,C ’lerden hiçbiri x ’e bağlı değilse, sabit katsayılı
diferansiyel denklem

• A,B,C ’lerden en az biri x ’e bağlıysa, değişken katsayılı
diferansiyel denklem
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2. Mertebe Lineer Diferansiyel Denklemler 2

İkinci mertebe diferansiyel denklemlerin genel çözümleri iki
tane keyfi integral sabiti içerir. Bu sabitler başlangıç şartları
veya sınır şartları ile belirlenir.

Tanım: Bir diferansiyel denklemi ve yarı kapalı aralığın
başlangıç noktasında, a ≤ x , verilen değerleri sağlayan
fonksiyonun bulunması problemine “başlangıç değer problemi”
denir.

y ′′ + p(x)y ′ + q(x)y = f (x), y(a) = c1 ve y ′(a) = c2

Tanım: Bir diferansiyel denklemi ve kapalı aralığın
kenarlarında, a ≤ x ≤ b, verilen değerleri sağlayan fonksiyonun
bulunması problemine “sınır değer problemi” denir.

y ′′ + p(x)y ′ + q(x)y = f (x), y(a) = c3 ve y(b) = c4

Burada c1, c2, c3, c4 verilen sabitler.
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2. Mertebe Lineer Homojen Dif Denklemler

Teorem: Lineer homojen bir diferansiyel denklemde iki
çözümün lineer toplamı da bir çözümdür.

Gösterelim. y1 ve y2 iki çözüm olsun. Çözüm, denklemi sağlar.

y ′′1 + p(x)y ′1 + q(x)y1 = 0

y ′′2 + p(x)y ′2 + q(x)y2 = 0

Birinci denklemi c1 sabitiyle, ikinci denklemi c2 sabitiyle
çarpalım ve taraf tarafa toplayalım.

[c1y1 + c2y2]′′ + p(x)[c1y1 + c2y2]′ + q(x)[c1y1 + c2y2] = 0

Burada y3 = c1y1 + c2y2 lineer toplam.

y ′′3 + p(x)y ′3 + q(x)y3 = 0

Sonuçta y3 fonksiyonu da bir çözümdür.
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2. Mertebe Lineer Homojen Sabit Katsayılı 1

a, b, c reel veya kompleks sabitler olmak üzere

ay ′′ + by ′ + cy = 0

türündeki denklemlerle fizikte sıklıkla karşılaşırız.

Çözüm için α reel veya compleks bir sabit olmak üzere
y = eαx fonksiyonunu öneririz. Sonra türevlerini alırız.

y = eαx ⇒ y ′ = αeαx ⇒ y ′′ = α2eαx

Bunları diferansiyel denkleme yerleştiririz.

(aα2 + bα + c)eαx = 0 ⇒ aα2 + bα + c = 0

karakteristik denklemi elde ederiz.
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2. Mertebe Lineer Homojen Sabit Katsayılı 2

Karakteristik denklemden iki tane kök buluruz, α1 ve α2. İki
durum olabilir.

A α1 6= α2 ise denklemin genel çözümü şöyle yazılır.

y(x) = C1e
α1x + C2e

α2x

B α1 = α2 ise denklemin genel çözümü şöyle yazılır.

y(x) = C1e
α1x + C2xe

α1x

Burada C1 ile C2 keyfi integral sabitleridir. Çakışık kök
durumuna dikkat ediniz.

Not: İkinci mertebe lineer denklemin genel çözümü lineer
bağımsız iki fonksiyonun lineer toplamı olarak yazılır.
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Fonksiyonların Lineer Bağımsızlığı

Tanım: fg ′ − f ′g niceliğine f ile g ’nin Wronskiyeni denir ve
W (f , g) ile gösterilir.

W (f , g) =

∣∣∣∣ f g
f ′ g ′

∣∣∣∣ = fg ′ − gf ′

Tanım: W (f , g) 6= 0 ise f (x) ile g(x) “lineer bağımsızdır”
deriz.

Örnek: eα1x ile eα2x lineer bağımsız mıdır?

W =

∣∣∣∣ eα1x eα2x

α1e
α1x α2e

α2x

∣∣∣∣ = (α2 − α1)e(α1+α2)x

Eğer α1 6= α2 ise, W 6= 0 olduğu için eα1x ile eα2x lineer
bağımsız olur.

Ödev: eα1x ile xeα1x lineer bağımsız olduğunu gösteriniz.
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Örnek: Basit Harmonik Salınıcılar

ẋ ≡ dx/dt olmak üzere ẍ + 4x = 0 denklemini çözünüz.

Çözüm: Önce x = eαt önerelim. ẍ = α2eαt olur.

α2 + 4 = 0 karakteristik denklem

İki farklı kök; α1 = 2i ve α2 = −2i . Genel çözüm şöyle olur.

x(t) = C1e
i2t + C2e

−i2t

Euler formülüyle; e±i2t = cos (2t)± i sin (2t).

x(t) = a1 cos (2t) + a2 sin (2t)

Şu bağıntıyla; cos (2t + φ) = cos (2t) cosφ− sin (2t) sinφ.

x(t) = A cos (2t + φ)

İntegral sabitleri biri birileri cinsinden yazılır.
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Örnek: Hiperbolik Fonksiyonlar

ψ′ ≡ dψ/dx olmak üzere ψ′′ − 9ψ = 0 denklemini çözünüz.

Çözüm: Önce ψ = eαx önerelim. ψ′′ = α2eαx olur.

α2 − 9 = 0 karakteristik denklem

İki farklı kök; α1 = 3 ve α2 = −3. Genel çözüm şöyle olur.

ψ(x) = C1e
3x + C2e

−3x

Şu formülle; e±3x = cosh (3x)± sinh (3x).

ψ(x) = a1 cosh (3x) + a2 sinh (3x)

İntegral sabitleri biri birileri cinsinden yazılır.
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Örnek: Çakışık Kök

y ′ ≡ dy/dx olmak üzere y ′′ − 8y ′ + 16y = 0 denklemini
çözünüz.

Çözüm: Önce y = eαx önerelim. Türevleri alalım;
y ′ = αeαx ve y ′′ = α2eαx .

α2 − 8α + 16 = 0 ⇒ (α− 4)2 = 0

Çakışık kök; α1 = α2 = 4. Genel çözüm şöyle olur.

y(x) = C1e
4x + C2xe

4x

= (C1 + C2x)e4x

Burada C1 ve C2 keyfi integral sabitleri.



Giriş

Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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Örnek: Sönümlü Serbest Salınımlar 1

m, c , k reel pozitif sabitler ve ẋ ≡ dx/dt olmak üzere
aşağıdaki denklemi çözünüz.

mẍ + cẋ + kx = 0

Bu denklem, viskozluğu c ile orantılı bir sıvı içinde Hooke
sabiti k olan yaya bağlı m kütleli cismin yaptığı hareketin
denklemidir.

Çözüm: Önce denklemi standart formda yazalım;

ẍ + 2pẋ + ω2
0x = 0

p = c/2m sönüm katsayısı ve ω0 =
√

k/m doğal frekans.

x = eαt önerisiyle karakteristik denklemi yazalım.

α2 + 2pα + ω2
0 = 0
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Örnek: Sönümlü Serbest Salınımlar 2

Kökleri hesap edelim; α1,2 = −p ±
√

p2 − ω2
0. Üç durum

olabilir.

• Durum 1: p2 > ω2
0, yani c >

√
4km, olsun.

α1 = −
(
p −

√
p2 − ω2

0

)
< 0

α2 = −
(
p +

√
p2 − ω2

0

)
< 0

x(t) = C1e
−
(
p−
√

p2−ω2
0

)
t

+ C2e
−
(
p+
√

p2−ω2
0

)
t

Bu durumda x = 0 yapan sadece t →∞ vardır.

Aşırı sönüm vardır. Salınıcı viskozluğu çok yüksek bir
akışkan içinde.
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Örnek: Sönümlü Serbest Salınımlar 3

• Durum 2: p2 = ω2
0, yani c =

√
4km, olsun.

α1 = α2 = −p < 0

x(t) = (C1 + C2t)e−pt

Bu durumda x = 0 yapan t →∞ var ve eğer C1 ile C2

zıt işaretliyse t = −C1/C2 olabilir.

Kritik sönüm vardır. Salınıcı kritik bir viskozluğa sahip bir
akışkan içinde.

• Durum 3: p2 < ω2
0, yani c <

√
4km, olsun.

α1 = −p + i
√
ω2

0 − p2 = −p + iω1

α2 = −p − i
√
ω2

0 − p2 = −p − iω1



Giriş
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Örnek: Sönümlü Serbest Salınımlar 4

Burada ω1 =
√
ω2

0 − p2 tanımladık; ω1 < ω0 veya periyot T

cinsinden ω = 2π/T ile T1 > T0.

Şimdi x(t)’yi yazalım.

x(t) = C1e
(−p+iω1)t + C2e

(−p−iω1)t

= e−pt
(
C1e

iω1t + C2e
−iω1t

)
= e−pt [a1 cos (ω1t) + a2 sin (ω1t)]

= Ae−pt cos(ω1t + φ)

Bu durumda kosinüsün bir çok sıfırı olduğu için x = 0 yapan
çok sayıda t vardır. Genliği, Ae−pt , zamanla ekponansiyel
azalan salınım hareketi. Salınıcı viskozluğu düşük bir akışkan
içinde.
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2. Mertebe Lineer İnhomojen Dif Denk 1

yh(x) ile yo(x) fonksiyonları aşağıdaki denklemleri sağlasın.

y ′′o + p(x)y ′o + q(x)yo = f (x)

y ′′h + p(x)y ′h + q(x)yh = 0

Bu iki denklemi taraf tarafa toplayalım.

[yh + yo ]′′ + p(x)[yh + yo ]′ + q(x)[yh + yo ] = f (x)

O halde, aşağıdaki homojen olmayan lineer diferansiyel
denklemin

y ′′ + p(x)y ′ + q(x)y = f (x)

genel çözümü şöyle olur.

y(x) = yh(x) + yo(x)

yo(x) özel çözüm ve yh(x) homojen (tamamlayıcı) çözüm
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2. Mertebe Lineer İnhomojen Dif Denk 2

Geçen sayfalarda homojen denklemi

y ′′h + p(x)y ′h + q(x)yh = 0

nasıl çözeceğimizi öğrendik. Bu durumda tek yapılacak iş, özel
çözümü belirlemektir. İki yöntem göreceğiz; tahmin yöntemi
ve sabitlerin değişimi yöntemi.

Tahmin Yöntemi

Eğer f (x)’in türevleri f (x) ile aynı biçimdeyse, o zaman yo(x)
için bir tahmin yapabiliriz.

f (x) yo(x)

Polinom Polinom
üstel üstel

sin x , cos x sin x , cos x



Giriş
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Örnek: Özel Çözüm 1

y ′′ + 3y ′ + 4y = 3x + 2 denkleminin özel çözümünü bulunuz.

Çözüm: f (x) = 3x + 2 fonksiyonu birinci derece polinom
olduğu için yo(x) = Ax + B öneriyoruz. Burada A ve B
belirsiz katsayılar.

yo = Ax + B ⇒ y ′o = A ⇒ y ′′o = 0

Önerilen çözüm inhomojen denklemi sağlamalıdır.

0 + 3A + 4(Ax + B) = 3x + 2

4Ax + (3A + 4B) = 3x + 2

Polinom denkliğinden;
x1: 4A = 3 ise A = 3/4
x0: 3A + 4B = 2 ise B = −1/16. O halde,

yo(x) =
3

4
x − 1

16
özel çözüm
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Örnek: Özel Çözüm 2

y ′′ − 4y = 2e3x denkleminin özel çözümünü bulunuz.

Çözüm: f (x) = 2e3x fonksiyonu üstel olduğu için
yo(x) = Ae3x öneriyoruz. Burada A belirsiz katsayı.

yo = Ae3x ⇒ y ′o = 3Ae3x ⇒ y ′′o = 9Ae3x

Önerilen çözüm inhomojen denklemi sağlamalıdır.

9Ae3x − 4Ae3x = 2e3x ⇒ A =
2

5

O halde,

yo(x) =
2

5
e3x özel çözüm
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Özel
Fonksiyonlar

Kaynaklar

184/327

Örnek: Özel Çözüm 3

3y ′′ + y ′ − 2y = 2 cos x denkleminin özel çözümünü bulunuz.

Çözüm: f (x) = cos x fonksiyonundan dolayı
yo(x) = A cos x + B sin x öneriyoruz. Burada A ile B belirsiz
katsayılar.

y ′o = −A sin x + B cos x

y ′′o = −A cos x − B sin x

Bunları inhomojen denkleme yerleştir, ortak paranteze al.

(−5A + B) cos x + (−A− 5B) sin x = 2 cos x

O halde, −5A + B = 2 ve A + 5B = 0 denklemlerinden
A = −5/13 ve B = 1/13 hesaplanır.

yo(x) = − 5

13
cos x +

1

13
sin x özel çözüm
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DİKKAT! Örnek: Özel Çözüm 4

y ′′ − 4y = 2e2x denkleminin özel çözümünü bulunuz.

Çözüm: f (x) = 2e2x fonksiyonundan dolayı yo(x) = Ae2x

öneriyoruz. Burada A belirsiz katsayı.

yo = Ae2x ⇒ y ′o = 2Ae2x ⇒ y ′′o = 4Ae2x

Önerilen çözüm inhomojen denklemi sağlamalıdır.

4Ae2x − 4Ae2x = 2e2x

0 = 2e2x sorun var!

Sorun var, çünkü e2x fonksiyonu homojen çözümlerinden biri.

Dikkat! Önerdiğimiz özel çözüm, homojen çözümlerden farklı
olmalıdır.
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DİKKAT! Örnek: Özel Çözüm 5

İlk akla gelen yeni öneri yo = Axe2x .

yo = Axe2x ⇒ y ′o = A(1 + 2x)e2x ⇒ y ′′o = 4A(1 + x)e2x

Önerilen çözüm inhomojen denklemi sağlamalıdır.

4A(1 + x)e2x − 4Axe2x = 2e2x

4A = 2 ⇒ A =
1

2

Sonuçta,

yo(x) =
1

2
xe2x özel çözüm
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Özel
Fonksiyonlar

Kaynaklar

187/327

Örnek: Özel Çözüm 6

Aşağıdaki başlangıç değer problemini çözünüz.

y ′′ − 3y ′ + 2y = 3e−x − 10 cos (3x) , y(0) = 1 , y ′(0) = 2

Çözüm: Önce homojen denklemi y ′′ − 3y ′ + 2y = 0 çözelim.

yh = eαx ⇒ α2 − 3α + 2 = 0 ⇒ α1 = 1 , α2 = 2

yh(x) = C1e
x + C2e

2x homojen çözüm

C1 ve C2 keyfi integral sabitleri. f (x) = 3e−x − 10 cos (3x)
olduğu için özel çözüm olarak şunu öneriyoruz.

yo = Ae−x + B cos (3x) + C sin (3x)

A,B,C belirsiz katsayılar. Bu noktada, yo ’nün içindeki
fonksiyonlar ve türevleri yh’de olmadığı için böyle devam
edebiliriz.



Giriş
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Örnek: Özel Çözüm 7

Önerilen özel çözüm inhomojen diferansiyel denklemi sağlamak
zorunda.

yo = Ae−x + B cos (3x) + C sin (3x)

y ′o = −Ae−x − 3B sin (3x) + 3C cos (3x)

y ′′o = Ae−x − 9B cos (3x)− 9C sin (3x)

Bunları denkleme yerleştir ve ortak paranteze al.

6Ae−x + (−7B − 9C ) cos (3x)

+ (9B − 7C ) sin (3x) = 3e−x − 10 cos (3x)

Polinom denkliğinden;

6A = 3 , 7B + 9C = 10 , 9B − 7C = 0

A =
1

2
, B =

7

13
, C =

9

13
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Örnek: Özel Çözüm 8

O halde, özel çözümü yazabiliriz.

yo =
1

2
e−x +

7

13
cos (3x) +

9

13
sin (3x)

Şimdi de genel çözümü yazabiliriz.

y(x) = yh(x) + yo(x)

= C1e
x + C2e

2x +
1

2
e−x +

7

13
cos (3x) +

9

13
sin (3x)

Başlangıç şartı için y ′(x) hesap edelim.

y ′(x) = C1e
x + 2C2e

2x − 1

2
e−x − 21

13
cos (3x) +

27

13
sin (3x)
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Örnek: Özel Çözüm 9

Başlangıç şartları;

y(0) = 1 ⇒ C1 + C2 +
1

2
+

7

13
= 1

y ′(0) = 2 ⇒ C1 + 2C2 −
1

2
+

27

13
= 2

İki bilinmeyenli iki lineer denklem sisteminden C1 ile C2

çözülür.

C1 = −1

2
ve C2 =

6

13

En sonunda istenen çözüm yazılır.

y(x) = −1

2
ex +

6

13
e2x +

1

2
e−x +

7

13
cos (3x) +

9

13
sin (3x)
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Özel
Fonksiyonlar

Kaynaklar

191/327

Örnek: Sönümlü Zorlanmış Salınımlar 1

Bir akışkan içinde serbestçe hareket eden yaya bağlı cisim
problemini incelemiştik ve adına “sönümlü serbest salınım”
demiştik. Şimdi bu cisme ilave bir dış kuvvet uygulayalım. Bu
kuvvet Fdıs = F0 cosωt olsun. Burada ω dış kuvvetin frekansı
ve F0 dış kuvvetin genliği. Yeni duruma “sönümlü zorlanmış
salınım” adını veriyoruz. Cismin hareket denklemi şöyle olur.

mẍ + cẋ + kx = F0 cosωt

Homojen çözümü bulmuştuk.

xh = C1e
−
(

c
2m
−
√

c2

4m2−
k
m

)
t

+ C2e
−
(

c
2m

+
√

c2

4m2−
k
m

)
t

Üç durum söz kousuydu; c >
√

4km aşırı sönüm, c =
√

4km
kritik sönüm, c <

√
4km sönümlü salınım.
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Örnek: Sönümlü Zorlanmış Salınımlar 2

Üç durumda da t →∞ iken xh → 0 idi. Bu nedenle, bu
çözüme “geçici çözüm” de denir. Sonuçta yeterince
beklenirse, baskın (kararlı) çözüm özel çözümden gelir.

xo(t) = A cosωt + B sinωt

ẋo(t) = −Aω sinωt + Bω cosωt

ẍo(t) = −Aω2 cosωt − Bω2 sinωt

Bunları inhomejen diferansiyel denkleme yerleştirelim ve cosωt
ile sinωt parantezine alalım. Polinom denkliğinden iki
denklem yazarız. (

k −mω2
)
A + cωB = F0

−cωA +
(
k −mω2

)
B = 0

A ile B çözülür.
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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Örnek: Sönümlü Zorlanmış Salınımlar 3

A =

(
k −mω2

)
F0

(k −mω2)2 + (cω)2
ve B =

cωF0

(k −mω2)2 + (cω)2

Artık matematiksel olarak inhomojen diferansiyel denklemin
genel çözümünü yazabiliriz, x(t) = xh(t) + xo(t).

x(t) =C1e
−
(

c
2m
−
√

c2

4m2−
k
m

)
t

+ C2e
−
(

c
2m

+
√

c2

4m2−
k
m

)
t

+

[ (
k −mω2

)
F0

(k −mω2)2 + (cω)2

]
cosωt

+

[
cωF0

(k −mω2)2 + (cω)2

]
sinωt

Bu haliyle bu çözümü fiziksel olarak yorumlamak çok zor. O
yüzden, çözümü farklı bir formda yazalım.
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Örnek: Sönümlü Zorlanmış Salınımlar 4

Öncelikle yeterince beklediğimizi varsayarak geçici (homojen)
çözümü ihmal edelim.

x(t) = xh(t) + xo(t) ' xo(t)

' A cosωt + B sinωt

' C cos (ωt − φ) kararlı çözüm

Bu da genliği C , frekansı ω olan basit harmonik salınımdır. φ
faz sabiti olup bu örnekte fiziksel önemi yoktur. C ile φ’yi A
ile B cinsinden biliyoruz.

C =
√

A2 + B2 = , cosφ =
A

C
, sinφ =

B

C

Şimdi ω2
0 = k/m → k = mω2

0 yazalım.

x(t) ' F0√
m2
(
ω2

0 − ω2
)2

+ (cω)2
cos (ωt − φ)
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Örnek: Sönümlü Zorlanmış Salınımlar 5

Kararlı salınım hareketinin genliği dış kuvvetin frekansına
bağlı, C (ω). O sebeple, Cmax yapan ω’yı hesap edelim.

dC

dω
= 0 ⇒ ω2 = ω2

0 −
c2

2m2

• ω2
0 ≤ c2

2m2 , yani c >
√

2km, ise ω = 0’da C = F0/k’dan
başlayarak genlik ω’ya göre düzgün azalır. Cmax yok.

• ω2
0 >

c2

2m2 , yani c <
√

2km, ise genlik ω = 0’da F0/k ile

başlıyor, sonra ω =
√
ω2

0 − c2/2m2 değerinde Cmax olana

kadar artıyor, daha sonra da sıfıra doğru azalıyor.

Not: c = 0 olursa, ω = ω0’da C →∞. Bu duruma
“rezonans” denir. ω0 sistemin iç (doğal) ferkansı, ω dış
kuvvetin frekansı. Rezonans, mekanik sistemlerde yıkıcı
olurken, elektrik devrelerinde arzu edilir.
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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yh’deki Sabitlerin Değişimi Yöntemi 1

Özel çözümü bulurken tahmin yöntemi her zaman çalışmaz.
Örneğin aşağıdaki denkleme bakalım.

y ′′ + y = tan x

Burada f (x) = tan x fonksiyonunun türevleri

sec2 x , 2 sec2 tan x , 4 sec2 tan2 x + 2 sec4 , · · ·

gibi tan x ’i tekrarlamayan yeni fonksiyonlar içeriyor. Bu
nedenle tahmin yöntemi bu denklemi çözmede işe yaramaz.

Yeni yöntemde önce homojen çözümdeki belirsiz integral
sabitlerini C1 → u1(x) ve C2 → u2(x) ile değiştiririz.

Sonra, diferansiyel denklemin mertebesini düşürecek şekilde
ui (x)’ler üzerinde koşullar koyarız.
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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yh’deki Sabitlerin Değişimi Yöntemi 2

p(x) ile q(x) açık bir I aralığında sürekli olsun.

y ′′ + p(x)y ′ + q(x)y = f (x) inhomojen denklem

“değişken” katsayılı ikinci mertebe lineer diferansiyel
denklemin homojen çözümlerini, y1(x) ve y2(x), biliyoruz.
“Sabit katsayılı” olsa da bu yöntem geçerlidir. İlk önce,

yh(x) = C1y1(x) + C2y2(x) homojen çözüm

Şimdi Ci ’leri ui (x)’lerle değiştirerek özel çözümü yazarız.

yo(x) = u1(x)y1(x) + u2(x)y2(x) özel çözüm (1)

Bunun türevini alırız.

y ′o =
[
u1y
′
1 + u2y

′
2

]
+
[
y1u
′
1 + y2u

′
2

]︸ ︷︷ ︸
=0
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yh’deki Sabitlerin Değişimi Yöntemi 3

Amacımız ui (x)’lerde birinci mertebe diferansiyel denklem elde
etmek olduğu için ikinci köşeli parantezi sıfırlıyoruz.

y1u
′
1 + y2u

′
2 = 0 (2)

Kalanı yazalım.
y ′o = u1y

′
1 + u2y

′
2 (3)

Bunun türevini alalım.

y ′′o = u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 (4)

(1), (3) ve (4) denklemlerini baştaki inhomojen denkleme
yerleştirelim ve düzenleyelim.

y ′1u
′
1 + y ′2u

′
2 + (y ′′1 + py ′1 + qy1)︸ ︷︷ ︸

=0

u1 + (y ′′2 + py ′2 + qy2)︸ ︷︷ ︸
=0

u2 = f (x)
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yh’deki Sabitlerin Değişimi Yöntemi 4

Dikkat! y1 ile y2 homojen diferansiyel denklemin çözümü
olduğu için iki parantez de sıfıra eşittir. Kalanı yazalım.

y ′1u
′
1 + y ′2u

′
2 = f (x) (5)

Artık (2) ile (5) denklemleri u′1 ile u′2 için iki tane lineer
denklemdir.

y1u
′
1 + y2u

′
2 = 0

y ′1u
′
1 + y ′2u

′
2 = f (x)

Bu iki denklemden u′1 ile u′2 çözülür. Sonra elde edilen iki tane
birinci mertebe diferansiyel denklem çözülür.

Dikkat! Özel çözüm hesap ettiğimiz için u′1 ile u′2 integralinde
belirsiz integral sabitlerini yazmayız.

y(x) = yh(x) + yo(x) genel çözüm
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Örnek: Sabitlerin Değişimi Yöntemi

y ′′ + y = tan x inhomojen denklemi çözünüz.

y ′′h + yh = 0 ⇒ yh = C1 cos x + C2 sin x

yo = u1(x) cos x + u2(x) sin x

u′1 cos x + u′2 sin x = 0

u′1(cos x)′ + u′2(sin x)′ = tan x

Buradan u′2 = sin x ⇒ u2(x) =
´

sin x dx = − cos x

Şimdi u′1 = −u′2 sin x/ cos x ise u1(x) =
´
− sin2 x

cos x dx =´
(cos x − sec x)dx = sin x − ln | sec x + tan x |. Sonuçta, genel

çözümü yazarız, y = yh + yo .

y = C1 sin x + C2 cos x − cos x ln | sec x + tan x |
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Değişken Katsayılı 2. Mertebe Dif Denk

Şimdiye kadar “sabit” katsayılı, ikinci mertebe, lineer,
homojen ya da inhomojen diferansiyel denklemlerle çalıştık.

Şimdi de “değişken” katsayılı, ikinci mertebe, lineer, homojen
ya da inhomojen diferansiyel denklemleri inceleyelim.

Bunu üç adımda ele alacağız. Birincisi fizik eğitiminde sıkça
karşılaştığımız Euler-Cauchy diferansiyel denklemi, ikincisi
Abel yöntemi (ya da mertebe indirme yöntemi) ve son olarak
sonsuz seri çözüm yöntemi.
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Euler-Cauchy Diferansiyel Denklemi 1

a, b, c sabitler olmak üzere

ax2y ′′ + bxy ′ + cy = f (x)

Euler-Cauchy diferansiyel denklemidir. Çözüm için iki yol
izlenebilir.

1 x = et dönüşümüyle denklem sabit katsayılı diferansiyel
denklem haline getirilir.

a
d2y(t)

dt2
+ (b − a)

dy(t)

dt
+ cy(t) = f (t)

2 Homojen Euler-Cauchy diferansiyel denklemine y = xm

önerilerek m için am2 + (b − a)m + c = 0 karakteristik
denkleminden m1 ile m2 elde edilir ve homojen çözüm
yazılır.

yh(x) = C1x
m1 + C2x

m2
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Euler-Cauchy Diferansiyel Denklemi 2

• Eğer m1 = m2 olursa, homojen çözüm şöyle yazılır.

yh(x) = C1x
m1 + C2 lnx xm1

İnhomojen denklemin genel çözümü için gerekli olan özel
çözüm geçen derslerde anlattığımız “tahmin etme” yöntemiyle
ya da “sabitlerin değişimi” yöntemiyle hesap edilerek genel
çözüm yazılır.

y(x) = yh(x) + yo(x)

Not: Biz ikinci yöntemi takip edeceğiz.

Not: m = iβ, β ∈ R, olduğunda şunu kullanırız.

y = x iβ ⇒ ln y = iβ ln x ⇒
y = e i(β ln x) = cos (β ln x) + i sin (β ln x)
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Örnek: İnhomojen Euler-Cauchy Denklemi 1

x2y ′′ − xy ′ − 3y = ln x/x genel çözümü bulunuz, x > 0.

Çözüm: Homojen çözüm;

y = xm ⇒ y ′ = mxm−1 ⇒ y ′′ = m(m − 1)xm−2

(m2 − 2m − 3)xm = 0 ⇒ m1 = −1 , m2 = 3

yh = C1x
−1 + C2x

3

Özel çözüm için denklemi standart formda yazarak

y ′′ − 1

x
y ′ − 3

x2
y =

ln x

x3

f (x) = ln x
x3 görelim. Şimdi de yh’de Ci → ui (x) yapalım.

yo(x) = u1(x)/x + x3u2(x)
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Örnek: İnhomojen Euler-Cauchy Denklemi 2

Böylece u′1 ve u′2 için iki denklem şöyle olur.

u′1/x + x3u′2 = 0

−u′1/x2 + 3x2u′2 = ln x/x3

Buradan u′1 = − ln x
4x ve u′2 = ln x

4x5 ile u1 ve u2 hesaplanır.

u1 = −1

4

ˆ
ln x

x
dx = −1

8
ln2 x

u2 =
1

4

ˆ
ln x

x5
dx = − 1

16x4

(
ln x +

1

4

)
En sonunda genel çözümü yazarız. C ′1 = C1 − 1

16 diyerek

y =
C ′1
x

+ C2x
3 − 1

16x

(
2 ln2 x + ln x

)
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Abel Yöntemi (Mertebe Düşürme) 1

Eğer lineer ikinci mertebe diferansiyel denklemin bir tane
“homojen” çözümünü y1(x) bulabilirsek y = u(x)y1(x)
atamasıyla (homojen veya inhomojen) diferansiyel denklem,
birinci mertebe lineer diferansiyel denkleme dönüşür. Buradan
y1(x)’den lineer bağımsız olan y2(x) hesap edilir. Sonuçta
genel çözüm yazılır.

Örnek: Aşağıdaki denklemin genel çözümünü bulunuz.

y ′′ + xy ′ − y = x2

Çözüm: Homojen denklemin y ′′ + xy ′ − y = 0 bir çözümünün
y1(x) = x olduğu kontrol edilebilir. Şimdi inhomojen
denklemde y = xu(x) dönüşümü yapalım.

y = xu ⇒ y ′ = u + xu′ ⇒ y ′′ = 2u′ + xu′′



Giriş
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Abel Yöntemi 2

Bunları inhomojen denkleme yerleştirelim.

u′′ +

(
2

x
+ x

)
u′ = x

Şimdi u′ = p ataması yapalım, u′′ = p′.

dp

dx
+

(
2

x
+ x

)
p = x

Birinci mertebe lineer difreansiyel denklem ve çözümünü
biliyoruz. Önce integral çarpanını hesap ederiz.

ρ = e
´

( 2
x

+x)dx = e ln x2
ex

2/2 = x2ex
2/2

Bununla denklemi çarpalım.

x2ex
2/2 dp

dx
+ x2ex

2/2

(
2

x
+ x

)
p = xx2ex

2/2
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Abel Yöntemi 3

Ve düzenleyelim.

d

dx

(
x2ex

2/2p
)

= x3ex
2/2 ⇒ x2ex

2/2p =

ˆ
x3ex

2/2dx

İntegralde x2/2 = t atayalım, x dx = dt.

x2ex
2/2p =

ˆ
2tetdt = 2tet − 2

ˆ
etdt = 2et(t − 1) + C2

İkinci adımda kısmi integral yaptık; u = 2t ve dv = etdt.
Sonuçta

x2ex
2/2p = ex

2/2(x2 − 2) + C2

p(x) =

(
1− 2

x2

)
+ C2

e−x
2/2

x2
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Abel Yöntemi 4

p = du/dx demiştik. u(x) =
´
p(x)dx ile u(x)’i bulalım.

u(x) =

ˆ (
1− 2

x2

)
dx + C2

ˆ
e−x

2/2

x2
dx

= x +
2

x
+ C2

ˆ
e−x

2/2

x2
dx + C1

Son olarak y = xu(x) kullanılarak genel çözüm yazılır.

y(x) = x2 + 2 + C2x

ˆ
e−x

2/2

x2
dx + C1x

Homojen denklemin iki tane lineer bağımsız çözümü y1 ve y2

ile özel çözümü yo şudur.

y1 = x ve y2 = x

ˆ
e−x

2/2

x2
dx ve yo = x2 + 2
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Diferansiyel Denklemlerin Seri Çözümleri

Lineer homojen değişken katsayılı ikinci mertebe bir
diferansiyel denklem verilmiş olsun.

y ′′ + f1(x)y ′ + f2(x)y = 0

Burada f1(x) ile f2(x) denklemde açıkça verilen kesirli
fonksiyonlar olabilir.

Bu türdeki denklemlere sonsuz kuvvet serisi biçiminde
çözümler arayabiliriz. Bulunan sonsuz serinin yakınsaklığı
ayrıca incelenir. Ama önce diferansiyel denklemin tekil nokta
yapılarını inceleyelim, çünkü önereceğimiz seriler bu tekil
noktaların yapısıyla ilgili olacak.

Diferansiyel Denklemin Tekil Nokta Yapısı

Tanım: Eğer f1(x) ve f2(x) fonksiyonları bir x0 noktasında
düzgünse (tekil değilse), x0’a diferansiyel denklemin “düzgün
noktası” denir.
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Diferansiyel Denklemin Tekil Nokta Yapısı

Tanım: Eğer f1(x) veya f2(x) fonksiyonu bir x0 noktasında
düzgün değilse (tekilse), fakat

(x − x0)f1(x) ve (x − x0)2f2(x)

fonksiyonları x0’da düzgünse, o zaman x0’a diferansiyel
denklemin “düzgün tekil noktası” denir.

Tanım: Eğer f1(x) veya f2(x) fonksiyonu bir x0 noktasında
düzgün değilse (tekilse), aynı zamanda

(x − x0)f1(x) ve (x − x0)2f2(x)

fonksiyonlarından en az biri x0’da hala düzgün değilse, o
zaman x0’a diferansiyel denklemin “düzgün olmayan tekil
noktası” denir.
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Tekillik Yapısının Çözümle İlgisi 1

Durum 1: x0 düzgün nokta ise diferansiyel denklemin x0

civarındaki çözümü aşağıdaki gibi bir sonsuz kuvvet serisi
olarak yazılabilir.

y =
∞∑
n=0

cn(x − x0)n

Bu çözüm önerisini denkleme yerleştirerek cn katsayıları
arasında bir bağıntı buluruz. Buna tekralama bağıntısı denir.
Bu sonsuz serinin yakınsama aralığı x0’a en yakın tekil noktaya
kadardır. Yani, |x − x0| < |xs − x0| yazarız, burada xs
denklemin x0’a en yakın tekil noktasıdır.
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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Tekillik Yapısının Çözümle İlgisi 2

Durum 2: x0 düzgün tekil nokta ise diferansiyel denklemin x0

civarındaki çözümü aşağıdaki gibi bir sonsuz kuvvet serisi
olarak yazılabilir.

y = (x − x0)m
∞∑
n=0

cn(x − x0)n

Burada m serbest indis, n toplam indisidir. Bu çözüm önerisini
denkleme yerleştirerek m için indis denklemi, cn katsayıları için
de tekrarlama bağıntısı buluruz. Bu sonsuz serinin yakınsama
aralığı |x − x0| < |xs − x0| ile verilir, burada xs denklemin x0’a
en yakın tekil noktasıdır.

Durum 3: x0 düzgün olmayan tekil nokta ise diferansiyel
denklemin x0 civarında sonsuz kuvvet serisinin varlığı garanti
değildir.
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Düzgün Nokta Etrafında Açılımlar

Fizikte ve mühendislikte aşağıdaki diferansiyel denklemle sıkça
karşılarız.

d2y

dθ2
+ cot θ

dy

dθ
+ `(`+ 1)y = 0

Burada θ bağımsız değişkeni 0 ≤ θ ≤ π aralığında değişen
küresel koordinattır ve ` şimdilik keyfi bir sabittir. Şimdi
x = cos θ ataması yaparak aşağıdaki diferansiyel denklemi elde
ederiz.

(1− x2)y ′′ − 2xy ′ + `(`+ 1)y = 0 Legendre dif denk.

x ’in tanım aralığı −1 ≤ x ≤ +1. Eğer ` = 0, 1, 2, · · · olursa
buna Legendre diferansiyel denklemi ve çözümlerine de
Legendre polinomları denir ve P`(x) ile gösterilir.
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Legendre Diferansiyel Denklemi 1

Not: Başta ` keyfi bir sabittir. Sonsuz serinin x = ±1
noktalarında yakınsak olmasını şart koşunca ` sabiti bir doğal
sayı olmak zorunda olacak1.

Legendre diferansiyel denklemini standart biçimde yazalım.

y ′′ − 2x

1− x2
y ′ +

`(`+ 1)

1− x2
y = 0

Buna göre f1 = − 2x
1−x2 ve f2 = `(`+1)

1−x2 fonksiyonları x = ±1
noktalarında düzgün değildir, yani xs = ±1 tekil noktalardır.

Şimdi de tekilliklerin yapısına karar vermek için (x − xs)f1 ve
(x − xs)2f2 fonksiyonlarının xs ’daki davranışlarına bakalım.

xs = +1′de


(x − 1)f1 = −(x − 1) 2x

1−x2 = 1 sonlu

(x − 1)2f2 = −(x − 1)2 `(`+1)
1−x2 = 0 sonlu

1Literatürde 0’ın bir doğal sayı olduğu konusunda fikir birliği yoktur.
Biz 0’ı dahil ediyoruz.
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Legendre Diferansiyel Denklemi 2

O halde, xs = +1 düzgün tekil noktadır. Benzer olarak,
xs = −1 de düzgün tekil noktadır.

xs = −1′de


(x + 1)f1 = −(x + 1) 2x

1−x2 = 1 sonlu

(x + 1)2f2 = −(x + 1)2 `(`+1)
1−x2 = 0 sonlu

Şimdi Legendre diferansiyel denkleminin çözümü olarak x0 = 0
düzgün noktası civarında kuvvet serisi yazalım.

y =
∞∑
n=0

cnx
n = c0 + c1x + c2x

2 + · · ·

Bunun türevlerini alalım.

y ′ =
∞∑
n=0

ncnx
n−1 ⇒ y ′′ =

∞∑
n=0

n(n − 1)cnx
n−2
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Legendre Diferansiyel Denklemi 3

Bunları diferansiyel denkleme yerleştirelim ve xn−2 ile xn

parantezine alalım.

∞∑
n=0

n(n−1)cnx
n−2 +

∞∑
n=0

[−n(n − 1)− 2n + `(`+ 1)] cnx
n = 0

İlk toplamda n = 0 ve n = 1 terimleri n(n − 1) çarpanından
dolayı sıfır olduğu için bu toplamı n = 2’den başlatabiliriz.

∞∑
n=2

n(n − 1)cnx
n−2 +

∞∑
n=0

[
−n2 − n + `2 + `

]
cnx

n = 0

Şimdi sadece ilk toplamda n→ n + 2 atayalım.

∞∑
n=0

(n + 1)(n + 2)cn+2x
n

+
∞∑
n=0

[
(`2 − n2) + (`− n)

]
cnx

n = 0
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Legendre Diferansiyel Denklemi 4

xn ortak parantezine alalım.

∞∑
n=0

{(n + 1)(n + 2)cn+2 + (`− n)(`+ n + 1)cn} xn = 0

Polinom denkliğinden {•} = 0 olmalıdır. Yani,

cn+2 =
(n − `)(n + `+ 1)

(n + 1)(n + 2)
cn “tekrarlama bağıntısı”

Buna göre çift katsayılar c0 cinsinden, tek katsayılar c1

cinsinden yazılır.

n = 0, 2, 4, · · · için bir çözüm yazalım.

n = 0 için c2 = −`(`+ 1)

2!
c0

n = 2 için c4 =
(2− `)(2 + `+ 1)

3.4
c2

=
(`− 2)`(`+ 1)(`+ 3)

4!
c0
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Legendre Diferansiyel Denklemi 5

Buradan çift çözümü yazabiliriz. Buna birinci çözüm deriz.

y1 = c0 + c2x
2 + c4x

4 + · · ·

= c0

{
1− `(`+ 1)

2!
x2 +

(`− 2)`(`+ 1)(`+ 3)

4!
x4 −+ · · ·

}
n = 1, 3, 5, · · · için de bir çözüm yazalım.

n = 1 için c3 = −(`− 1)(`+ 2)

3!
c1

n = 3 için c5 =
(3− `)(3 + `+ 1)

4.5
c3

=
(`− 3)(`− 1)(`+ 2)(`+ 4)

5!
c1

Buradan da tek çözümü, yani ikinci çözümü, yazarız.
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Legendre Diferansiyel Denklemi 6

y2 = c1 + c3x
3 + c5x

5 + · · ·

= c1

{
x

1!
− (`− 1)(`+ 2)

3!
x3

+
(`− 3)(`− 1)(`+ 2)(`+ 4)

5!
x5 −+ · · ·

}
Özellikler:

• Her iki sonsuz seri de −1 < x < +1 aralığında yakınsak,
fakat x = ±1 noktalarında ıraksaktır. Her bir serinin
diferansiyel denklemin bir çözümü olması için x = ±1
noktalarında da yakınsak olmasını isteriz. Iraksak olan bu
iki sonsuz serinin x = ±1 noktalarında yakınsak
olabilmelerinin tek yolu ` = 0, 1, 2, · · · , n yaparak sonsuz
seriyi sonlu bir terimde kesmektir. Böylece her bir seri bir
polinom olur.
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Legendre Diferansiyel Denklemi 7

• `’nin her bir değeri için c0 ile c1 sabitlerini y(x = 1) = 1
olacak şekilde belirlersek, elde edilen polinoma Legendre
polinomu denir ve P`(x) ile gösterilir, ` = 0, 1, 2, · · · .

i ` = 0, 2, 4, · · · ise y1 bir polinomdur ve yakınsaktır, fakat
y2 bir sonsuz seridir ve x = ±1 değerlerinde ıraksaktır,
yani y2(±1) =∞.
Örneğin, ` = 0 olsun.

y1(x) = c0

y2(x) = c1

(
x +

x3

3
+

x5

5
+ · · ·

)
=

c1

2
ln

(
1 + x

1− x

)
ii ` = 1, 3, 5, · · · ise bu sefer y2 bir polinomdur ve

yakınsaktır, fakat y1 bir sonsuz seridir ve x = ±1
değerlerinde ıraksaktır, yani y1(±1) =∞.
Örneğin, ` = 1 olsun.

y1(x) = c0

(
1− x2

1
− x4

3
− · · ·

)
= c0

[
1− x

2
ln

(
1 + x

1− x

)]
y2(x) = c1x
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Legendre Diferansiyel Denklemi 8

• Diferansiyel denklemin genel çözümü şöyle yazılır.

y(x) = a1y1(x) + a2y2(x)

a a2 = 0 ve ` = 0, 2, 4, · · · ise y(x) = A`P`(x) polinomu
−1 ≤ x ≤ +1 aralığında denklemin yakınsak olan genel
çözümüdür.

b a1 = 0 ve ` = 1, 3, 5, · · · ise y(x) = A`P`(x) polinomu
−1 ≤ x ≤ +1 aralığında denklemin yakınsak olan genel
çözümüdür.
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Düzgün Tekil Nokta Civarında Açılımlar

ν keyfi bir sabit olmak üzere aşağıdaki denkleme Bessel
diferansiyel denklemi denir.

x2y ′′ + xy ′ + (x2 − ν2)y = 0 Bessel dif denk

Bunu standart formda yazalım.

y ′′ +
1

x
y ′ +

x2 − ν2

x2
y = 0

x0 = 0 noktasında tekillik görünüyor. Tekilliğin yapısını
araştıralım.

x0 = 0′da


xf1 = x 1

x = 1 sonlu

x2f2 = x2 x2−ν2

x2 = −ν2 sonlu

O halde, x0 = 0 noktası düzgün tekil noktadır. Başka tekil
nokta görünmüyor. Ama x =∞ noktasına bakalım.
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Denklemin Sonsuzdaki Tekilliği

Bunun için z = 1/x dönüşümü yaparız. x →∞ giderken
z → 0 gider. Yani, yeni denklemin z0 = 0 noktasını
inceleyecğiz.

dy

dx
=

dy

dz

dz

dx
= − 1

x2

dy

dz
= −z2 dy

dz
d2y

dx2
=

[
d

dz

(
−z2 dy

dz

)]
dz

dx
= z4 d

2y

dz2
+ 2z3 dy

dz

Şimdi Bessel denklemi şöyle olur.

d2y

dz2
+

1

z

dy

dz
+

z2 − ν2

z4
y = 0

Buna göre z0 = 0’da bir tekil noktadır. Türüne karar verelim.

z0 = 0′da


zf1 = z 1

z = 1 sonlu

z2f2 = z2 z2−ν2

z4 =∞ sonlu değil
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Bessel Diferansiyel Denklemi 1

Sonuçta, z0 = 0 (yani x0 =∞) noktası, düzgün olmayan tekil
noktadır. Bu durumda, x0 = 0 düzgün tekil noktasına en
yakın tekil nokta xs =∞ olduğu için x0 = 0 civarındaki
sonsuz serinin yakınsama aralığı −∞ < x < +∞ olur.

Şimdi Bessel diferansiyel denklemine x0 = 0 düzgün tekil
noktası civarında kuvvet serisi çözümü yazalım.

y = xm
∞∑
n=0

cnx
n =

∞∑
n=0

cnx
n+m

y ′ =
∞∑
n=0

(n + m)cnx
n+m−1

y ′′ =
∞∑
n=0

(n + m)(n + m − 1)cnx
n+m−2

Burada n toplam indisi ve m serbest indis.
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Bessel Diferansiyel Denklemi 2

Bunları Bessel diferansiyel denklemine yerleştirelim ve
düzenleyelim.

∞∑
n=0

[
(n + m)2 − ν2

]
cnx

n+m +
∞∑
n=0

cnx
n+m+2 = 0

İlk toplamda n→ n + 2 atayalım. Yeni toplam n = −2’den
başlar.

∞∑
n=−2

[
(n + m + 2)2 − ν2

]
cn+2x

n+m+2 +
∞∑
n=0

cnx
n+m+2 = 0

İlk toplamda n = −2 ile n = −1 değerlerini açıkça yazalım ve
toplamı n = 0’dan itibaren yazalım.[

m2 − ν2
]
c0x

m +
[
(m + 1)2 − ν2

]
c1x

m+1

+
∞∑
n=0

[
(n + m + 2)2 − ν2

]
cn+2x

n+m+2 +
∞∑
n=0

cnx
n+m+2 = 0
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Bessel Diferansiyel Denklemi 3

İkinci satırı ortak parantezde yazalım.[
m2 − ν2

]
c0︸ ︷︷ ︸

=0

xm +
[
(m + 1)2 − ν2

]
c1︸ ︷︷ ︸

=0

xm+1

+
∞∑
n=0

{[
(n + m + 2)2 − ν2

]
cn+2 + cn

}︸ ︷︷ ︸
=0

xn+m+2 = 0

Eğer x0 = 0 düzgün nokta olsaydı, o zaman ilk satır otamatik
olarak düşecekti ve elimizde sadece cn ile cn+2’yi ilişkilendiren
bir tekrarlama bağıntısı kalacaktı. Ama x0 = 0 düzgün tekil
nokta olduğu için birinci satır düşmedi. Ancak, şimdi de
elimizde birinci satırı sıfırlamak için serbest indis m var.

Polinom denkliği üç tane bağıntı verir.
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Bessel Diferansiyel Denklemi 4

[
m2 − ν2

]
c0 = 0[

(m + 1)2 − ν2
]
c1 = 0

 indis denklemi

cn+2 = − cn
(n + m + 2)2 − ν2

tekrarlama bağıntısı

Çözüm için dört olasılık var.

• Eğer c0 = 0 ve c1 = 0 olursa, bütün cn = 0 olur ve y = 0
aşikar çözümüne ulaşırız. Aşikar olmayan çözümler istenir.

• Eğer c0 6= 0 ve c1 6= 0 olursa, indis denkleminden
ν2 = m2 = (m + 1)2 buluruz. m 6= m + 1 olduğu için bu
olasılık tutarsızdır ve kullanılamaz.

• Eğer c0 = 0 ve c1 6= 0 olursa, indis denkleminden
m = −1± ν olur. Her bir m kökü bir çözüm verir.

• Eğer c0 6= 0 ve c1 = 0 olursa, indis denkleminden
m = ±ν olur. Her bir m kökü bir çözüm verir.
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Bessel Diferansiyel Denklemi 5

Son iki olasılık çözüm olabilir. Biz dördüncüyle devam edelim.
Yani, birinci çözüm için m1 = +ν indis kökü ile c1 = 0 şartını
kullanalım.

y1(x) = xν(c0 + c2x
2 + c4x

4 + · · · )

Bu durumda tekrarlama bağıntısı şöyle olur.

cn+2 = − cn
(n + m + 2)2 − ν2

∣∣∣∣
m=ν

= − cn
[(n + m + 2) + ν][(n + m + 2)− ν]

∣∣∣∣
m=ν

= − cn
(n + 2ν + 2)(n + 2)
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Bessel Diferansiyel Denklemi 6

n = 0, 2, 4, · · · için bir hesap yapalım.

n = 0 için c2 = − c0

(2 + 2ν)(2)
= − c0

22(1 + ν)

n = 2 için c4 = − c2

(4 + 2ν)(4)
=

c0

24(1.2)(1 + ν)(2 + ν)
...

n = 2p için c2p =
(−1)pc0

22p(p!)(1 + ν)(2 + ν) · · · (p + ν)

burada p = 1, 2, 3, · · · . Bunları yukarıdaki y1(x)’de
yerleştirelim.
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Bessel Diferansiyel Denklemi 7

y1(x) = c0x
ν

[
1− 1

1 + ν

1

1!

(x
2

)2
+

1

(1 + ν)(2 + ν)

1

2!

(x
2

)4

−+ · · ·+ (−1)n

(1 + ν)(2 + ν) · · · (n + ν)

1

n!

(x
2

)2n
]

Burada c0 = 1
2νν! yazılırsa, bu sonsuz seriye “1. Tür Bessel

Fonksiyonu” denir ve Jν(x) ile gösterilir.

İkinci çözüm m2 = −ν indis kökünden elde edilir. Birinci indis
kökünde takip edilen adımlar tekrar edilerek y2(x) elde edilir.
Ya da bu örnekte kısaca y1(x)’de ν → −ν yazarak y2(x)
hızlıca yazılabilir.
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Bessel Diferansiyel Denklemi 8

y2(x) =
c0

xν

[
1− 1

1− ν
1

1!

(x
2

)2
+

1

(1− ν)(2− ν)

1

2!

(x
2

)4

−+ · · ·+ (−1)p

(1− ν)(2− ν) · · · (p − ν)

1

p!

(x
2

)2p
]

Bu seri de uygun bir şekilde normalize edilirse “2. Tür Bessel
Fonksiyonu” denir ve J−ν(x) ile gösterilir. Bazı kaynaklarda
Nν(x) veya Yν(x) ile gösterilir ve Neumann fonksiyonu veya
Weber fonksiyonu denir. ν pozitif tam sayı olursa payda da
sıfırlar olduğuna dikkat!

Sonuçta, Bessel diferansiyel denkleminin genel çözümü
y(x) = a1y1(x) + a2y2(x) olur. Eğer ν > 0 ise, o zaman
x = 0’da y2(x) patlıyor (ıraksaktır).

Not: m1 = m2 veya m1 ile m2 tam sayı olması durumlarında,
y2(x) fonksiyonu y1(x)’den lineer bağımsız olmaz. Bu
durumlarda ikinci çözüm aşağıdaki teoriyle elde edilir.



Giriş
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Fuchs Teoremi

İkinci mertebe lineer diferansiyel denklemin x0 düzgün tekil
noktası etrafındaki çözümü şöyle yazılır.

y =
∞∑
n=0

cn(x − x0)n+m

Serbest indis m için bir indis denklemi ve cn için de tekrarlama
bağıntısı bulunur.

(a) Eğer m1 6= m2 ve m1 ile m2 tam sayı değil ise, o zaman
her bir indis kökü biri birinden lineer bağımsız iki çözüm
verir. Genel çözüm bu ikisinin toplamıdır.

(b) Eğer m1 6= m2 ve m1 ile m2 tam sayı ise, o zaman m1

kökü bir çözüm verirken m2’nin verdiği diğer çözüm ilkine
lineer bağımlıdır. Yani, bir tane çözüm bulmuş oluruz.

(c) Eğer m1 = m2 ise, o zaman yalnızca bir tane çözüm
bulmuş oluruz.
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Fuchs Teoremi (dvm 1)

(b) ve (c) durumlarında ilk çözümden lineer bağımsız olan
ikinci çözüm “Abel yöntemi” veya “Frobenius yöntemi” ile
bulunur. Abel yöntemiyle diferansiyel denklemin mertebesi
düşürülerek birinci çözümden lineer bağımsız ikinci çözüm elde
ediliyordu, daha önce gördük.

Frobenius Yöntemi:

(b) Eğer m1 ve m2 tam sayı ise

i İndis kökü kullanılmadan yalnızca tekrarlama
bağıntısından yararlanılarak bir seri çözümü yazılır,
y = y(x ,m).

ii m1 > m2 ise birinci çözüm büyük kökle bulunur.
y1(x) = y(x ,m1)

iii y1(x)’den bağımsız olan ikinci çözüm şöyle elde edilir.

y2(x) =
∂

∂m
[(m −m2)y(x ,m)]

∣∣∣∣
m=m2
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Fuchs Teoremi (dvm 2)

(c) Eğer m1 = m2 ise

i İndis kökü kullanılmadan yalnızca tekrarlama
bağıntısından yararlanılarak bir seri çözümü yazılır,
y = y(x ,m).

ii Birinci çözüm y1(x) = y(x ,m1) ile elde edilir.
iii y1(x)’den lineer bağımsız olan ikinci çözüm şöyle elde

edilir.

y2(x) =
∂y(x ,m)

∂m

∣∣∣∣
m=m1
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Sorular ve Çözümler

Soru : Aşağıdaki diferansiyel denklemlerde bağımsız değişkeni,
bağımlı değişkeni, denklemin mertebesini ve denklemin
derecesini alttaki tabloda uygun yerlere yazın.

(a) y (3) − xy − ex + 1 = 0 , (b) s2 d2t
ds2 + st dtds = s + π ,

(c) 3
(
d4b
da4

)2
+ 2

(
db
da

)10
+ b7 − b5 = 0

Çözüm:

Bsız Değişken Blı Değişken Mertebe Derece

(a) x y 3 1

(b) s t 2 1

(c) a b 4 2
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Sorular ve Çözümler

Soru: x ′′ + 2x ′ + 26x = 82 cos(4t); x(0) = 6, x ′(0) = 0,
başlangıç değer problemini çözün.

Çözüm: Homojen çözüm:
x = ert ⇒ r2 + 2r + 26 = 0 ⇒ r = −1± 5i

xh = e−t(c1 cos 5t + c2 sin 5t)

Özel çözüm: xo = A cos 4t + B sin 4t. Türevlerini alalım.

x ′o = −4A sin 4t + 4B cos 4t

x ′′o = −16A cos 4t − 16B sin 4t

Bunları inhomojen denkleme yerleştirerek şunu elde ederiz.

A = 5 ve B = 4 ⇒ xo = 5 cos 4t + 4 sin 4t
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Sorular ve Çözümler

Genel çözüm: x = xh + xo ve türevi şöyle olur.

x(t) = e−t(c1 cos 5t + c2 sin 5t) + 5 cos 4t + 4 sin 4t

x ′(t) = e−t [(5c2 − c1) cos 5t − (5c1 + c2) sin 5t]

− 20 sin 4t + 16 cos 4t

Başlangıç şartalarıyla c1 ve c2 yi belirleyelim.

(i) x(0) = 6 ⇒ c1 + 5 = 6 ⇒ c1 = 1

(ii) x ′(0) = 0 ⇒ 5c2 − c1 + 16 = 0 ⇒ c2 = −3
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Sorular ve Çözümler

Soru: m, b, g pozitif reel sabitler olmak üzere aşağıdaki
başlangıç değer problemini düşünelim.

m
d2x

dt2
+ b

dx

dt
−mg = 0 , x(0) = 0,

dx(0)

dt
= 0

dx/dt = v atamasıyla diferansiyel denklemin mertebesini
düşürerek bu problemi çözünüz.

Cevap: dx/dt = v atamasıyla diferansiyel denklem şu hale
gelir.

m
dv

dt
+ bv −mg = 0

Bu diferansiyel denklem değişkenlerine ayrılabilirdir.

mdv

mg − bv
= dt =⇒ m

ˆ
−bdv

mg − bv
= −b

ˆ
dt
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Özel
Fonksiyonlar

Kaynaklar

240/327

Sorular ve Çözümler

Her iki integral de kolayca çözülebilir.

ln(mg − bv) =
c1 − bt

m
=⇒ v(t) =

mg

b
− e

c1−bt
m

Başlangıç şartlarından birini, v(0) = 0, uygulayarak integral
sabiti c1’i belirleyelim.

ec1/m =
mg

b
=⇒ v(t) =

mg

b

(
1− e−bt/m

)
Şimdi de dx/dt = v kullanarak x(t) =

´
v(t)dt bağımlı

değişkenini hesaplayalım.

x(t) =
mg

b

ˆ (
1− e−bt/m

)
dt =

mg

b
t +

m2g

b2
e−bt/m + c2
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Sorular ve Çözümler

Diğer başlangıç şartını, x(0) = 0, kullanarak ikinci integral
sabiti c2’yi belirleyelim.

0 +
m2g

b2
+ c2 = 0 =⇒ c2 = −m2g

b2

Sonuçta başlangıç değer probleminin tam çözümü şöyle olur.

x(t) =
mg

b
t − m2g

b2

(
1− e−bt/m

)
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Sorular ve Çözümler

Soru: (a) E bir sabit olmak üzere ψ′′ + (E − x2)ψ = 0
diferansiyel denkleminin x =∞ daki tekilliğini araştırınız. (b)
ψ(x) = e−x

2/2y(x) dönüşümüyle

y ′′ − 2xy ′ + (E − 1)y = 0

diferansiyel denklemini elde ediniz. Şimdi bu yeni denklemin
x = 0 noktası civarındaki genel çözümünü en az üçer terim
tutarak yazınız. Çözümün bir polinom olması (yani, belirli bir

terimden sonra serinin diğer terimlerinin sıfırlaması) için E ’nin
sağlaması gereken koşulu bulunuz.

Cevap: (a) Diferansiyel denklemde x = 1/z ataması yaparak
yeni denklemde z = 0 noktasını inceleriz.

ψzz +
2

z
ψz +

1

z4

(
E − 1

z2

)
ψ = 0
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Sorular ve Çözümler

Buna göre

z = 0’da f1(z) =
2

z
=∞ fakat zf1(z) = sonlu

z = 0’da f2(z) =
1

z4

(
E − 1

z2

)
=∞ ve z2f2(z) =∞

olduğu için z = 0, yani x =∞, düzgün olmayan tekil noktadır.
(b) ψ(x) = e−x

2/2y(x) atamasıyla

ψ′ = e−x
2/2
(
y ′ − xy

)
ψ′′ = e−x

2/2
[
y ′′ − 2xy ′ + (x2 − 1)y

]
olur ve diferansiyel denklem şu hale gelir;

y ′′ − 2xy ′ + (E − 1)y = 0
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Sorular ve Çözümler

Burada x = 0 noktası bu diferansiyel denklem için “düzgün
nokta” olduğu için y =

∑∞
n=0 cnx

n biçiminde seri çözümü
ararız.

y =
∞∑
n=0

cnx
n ⇒ y ′ =

∞∑
n=0

ncnx
n−1 ⇒ y ′′ =

∞∑
n=0

n(n−1)cnx
n−2

Bunları diferansiyel denkleme yerleştirelim ve x ’in kuvvetlerine
göre düzenleyelim.

∞∑
n=0

n(n − 1)cnx
n−2 +

∞∑
n=0

[−2ncn + (E − 1)cn] xn = 0

İlk toplamda n(n − 1) çarpanından dolayı toplamı n = 2’den
başlatabiliriz.
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Özel
Fonksiyonlar

Kaynaklar

245/327

Sorular ve Çözümler

∞∑
n=2

n(n − 1)cnx
n−2 +

∞∑
n=0

(E − 1− 2n) cnx
n = 0

Şimdi de ilk toplamda toplam indisini n→ n + 2 olarak
değiştirelim.

∞∑
n=0

(n + 1)(n + 2)cn+2x
n +

∞∑
n=0

(E − 1− 2n) cnx
n = 0

Artık xn ortak parantezine alabiliriz.

∞∑
n=0

[(n + 1)(n + 2)cn+2 + (E − 1− 2n)cn] xn = 0

Buradan tekrarlama bağınıtısını yazarız.

cn+2 = − E − 1− 2n

(n + 1)(n + 2)
cn
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Sorular ve Çözümler

İlk altı katsayıyı yazalım.

c0 6= 0 ⇒ c2 = −E − 1

2!
c0 ⇒ c4 =

(E − 1)(E − 5)

4!
c0

c1 6= 0 ⇒ c3 = −E − 3

3!
c1 ⇒ c5 =

(E − 3)(E − 7)

5!
c1

Sonuçta seri çözümü y(x) = c0 + c1x + c2x
2 + c3x

3 + · · · şu
hale gelir.

y(x) =c0

[
1 +

1− E

2!
x2 +

(1− E )(5− E )

4!
x4 + · · ·

]
︸ ︷︷ ︸

y1(x)

+ c1

[
x +

3− E

3!
x3 +

(3− E )(7− E )

5!
x5 + · · ·

]
︸ ︷︷ ︸

y2(x)
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Sorular ve Çözümler

x → ±∞ iken hem y1(x) hem de y2(x) ıraksaktır. Bu çözümü
yakınsak yapmak için sonsuz seri belli bir terimde kesilmelidir.
Yani, E = 2n + 1 burada n = 0, 1, 2, · · · olmalıdır.

E = 1, 5, 9, · · · iken c0 6= 0 ve c1 = 0

E = 3, 7, 11, · · · iken c0 = 0 ve c1 6= 0
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Sorular ve Çözümler

Soru: Aşağıdaki diferansiyel denklemin iki çözümünü x = 0
civarında seri olarak en az üç terim tutarak yazınız.

4xy ′′ + 2y ′ + y = 0

Cevap: x = 0 noktası düzgün tekil nokta olduğu için
y =

∑∞
n=0 cnx

n+m önerelim. Bunu diferansiyel denkleme
yerleştirelim.

∞∑
n=0

4(n + m)(n + m − 1)cnx
n+m−1

+
∞∑
n=0

2(n + m)cnx
n+m−1 +

∞∑
n=0

cnx
n+m = 0

Ortak paranteze alalım.
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Sorular ve Çözümler

∞∑
n=0

2{(n + m)[2(n + m)− 1]}cnxn+m−1 +
∞∑
n=0

cnx
n+m = 0

Birinci toplamda n→ n + 1 yazalım. Bu durumda yeni toplam
n = −1 den başlar.

∞∑
n=−1

2{(n+m+1)[2(n+m+1)−1]}cn+1x
n+m+

∞∑
n=0

cnx
n+m = 0

Birinci toplamda n = −1 yazıp, toplamı n = 0 dan başlatalım.

2C0m(2m − 1)xm−1

+
∞∑
n=0

[2(n + m + 1)(2n + 2m + 1)cn+1 + cn]xn+m = 0
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Sorular ve Çözümler

Buradan indis kökleri ve tekrarlama bağıntısı şöyle olur.

m1 = 0, m2 =
1

2
ve cn+1 =

−cn
2(n + m + 1)(2n + 2m + 1)

Her bir indis kökü bir çözüm verir. Buna göre birinci çözüm
için tekrarlama bağıntısında m = 0 yerleştiririz:

cn+1 =
−cn

(2n + 1)(2n + 2)

O halde, c1 = −c0/2!, c2 = c0/4!, · · · olur. Sonuçta,

y1(x) = x0
∞∑
n=0

cnx
n = c0

(
1− x

2!
+

x2

4!
−+ · · ·

)
= c0 cos

√
x
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Sorular ve Çözümler

İkinci çözüm için tekrarlama bağıntısında m = 1/2 yerleştiririz:

cn+1 =
−cn

(2n + 2)(2n + 3)

O halde, c1 = −c0/3!, c2 = C0/5!, · · · olur ve sonuçta,

y2(x) = x1/2
∞∑
n=0

cnx
n = c0

(
x1/2 − x3/2

3!
+

x5/2

5!
−+ · · ·

)
= c0 sin

√
x
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BÖLÜM 7

ÖZEL FONKSİYONLAR
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Ortonormal Vektör Uzayı

Eğer V n = {~u1, ~u2, · · · , ~ui , · · · , ~un}, i = 1, 2, · · · , n,
kümesinin elemanları lineer bağımsızlarsa, V n kümesine
n-boyutlu vektör uzayı denir. İlaveten bu vektörler aşağıdaki
skaler çarpım kuralını sağlarlarsa,

~ui .~uj = δij =

{
1 i = j ise
0 i 6= j ise

o zaman, ~ui ’ler ortonormal vektörlerdir deriz. Bu durumda
herhangi bir ~A ∈ V n vektörünü bu vektörler cinsinden
yazabiliriz.

~A = A1~u1 + A2~u2 + · · ·+ An~un =
n∑

i=1

Ai ~ui

Burada ~ui ’ye ortonormal baz vektörü, Ai ’ye ~A’nın i-yinci
bileşeni denir. ~ui bir vektör, fakat Ai bir skalerdir.
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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Bir Vektörün Bileşenleri

Tanım: Eğer Ai ∈ R ise V n’ye “reel” vektör uzayı, Ai ∈ C ise
“kompleks” vektör uzayı denir.

Ai ’yi hesaplamak için yukarıdaki açılımı ~ui ile skaler çarparız.

~ui . ~A =
n∑

j=1

Aj ~ui .~uj︸︷︷︸
δij

=
n∑

j=1

Ajδij = Ai

Hatırlatma: Kompleks vektör uzayında, vektörlerin skaler
çarpımında sıra önemliydi!

~A. ~B =
(
~B. ~A
)∗

Bunu matrisler başlığı altında somut olarak görmüştük.

O halde, iki vektörün skaler çarpımını dikkatlice tanımlayalım.
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İki Vektörün Skaler Çarpımı

Tanım: ~A, ~B ∈ V n vektörlerinin skaler çarpımını şöyle yazarız.

~A. ~B :=
(
~A, ~B

)
=

 n∑
i=1

Ai ~ui ,
n∑

j=1

Bj~uj


=

n∑
i=1

n∑
j=1

A∗i Bj (~ui , ~uj) =
n∑

i=1

n∑
j=1

A∗i Bjδij

(
~A, ~B

)
:=

n∑
i=1

A∗i Bi

= A∗1B1 + A∗2B2 + · · ·+ A∗nBn

Dikkat! Skaler çarpım için notasyon değişti.

~A. ~B −→
(
~A, ~B

)
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İki Fonksiyonun Skaler Çarpımı

Şimdi kesikli i-parametresi sürekli x-parametresiyle ve
∑

i

işlemi
´
dx işlemiyle yer değiştirsin. Dolayısıyla Ai nesnesi

A(x) nesnesiyle yer değiştirir. 1 ≤ i ≤ n aralığı da a ≤ x ≤ b
aralığıyla yer değiştirsin.

(A(x),B(x)) :=

ˆ b

a
A∗(x)B(x)dx skaler çarpım

Bu işleme a ≤ x ≤ b aralığında tanımlı A(x) ile B(x) kompleks
fonksiyonlarının skaler çarpımı denir. Skaler çarpımın sonucu,
tanım gereği bir sayıdır. Bu sayı reel veya kompleks olabilir.

Herhangi bir A(x) fonksiyonunun (vektörünün) normu veya
boyu her zaman pozitif reel sayı olur.

|A(x)| =
√

(A(x),A(x)) ∈ R+

Daha doğrusu |A(x)| ≥ 0 olur.
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Fonksiyonlardan Oluşan Vektör Uzayı

~A ∈ V n vektörünü cebirsel gösterimde bileşenleriyle temsil
ederiz.

~A = (A1,A2, · · · ,Ai , · · · ,An)

~A := Ai −→ A(x)

O halde, a ≤ x ≤ b aralığında tanımlı bütün fonksiyonlardan
oluşan küme, V∞ = {A(x),B(x), · · · , f (x), g(x), · · · }, bir
vektör uzayı oluşturur. Vektör uzayının elemanlarına vektör
dendiği için fonksiyonlara artık zaman zaman vektör diyeceğiz.

a ≤ x ≤ b aralığında x-parametresi sonsuz tane değer
alabileceği için V∞ kümesinin sonsuz tane elemanı vardır.
Yani, fonksiyonlardan oluşan bir vektör uzayının boyutu
sonsuzdur. O nedenle, V∞ kümesinde ∞ sembolü kullandık.
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Örnek: Ortonormal Fonksiyonlar 1

Aşağıdaki fonksiyonların 0 ≤ x ≤ 1 aralığında ortonormal
olmaları için reel ci sabitlerini belirleyiniz.

f (x) = c1 , g(x) = c2 + c3x

Çözüm: Önce f ’nin boyunu 1 yapalım, yani normalize edelim.

(f , f ) = 1 ⇒
ˆ 1

0
|f |2 dx =

ˆ 1

0
c2

1dx = 1 ⇒ c1 = 1

Şimdi de bu normalize f ’yi g ’ye dik (ortogonal) yapalım.

(f , g) = 0 ⇒
ˆ 1

0
f ∗gdx =

ˆ 1

0
(1)(c2 + c3x)dx = 0(

c2x +
c3

2
x2
)1

0
= 0

c2 +
c3

2
= 0 ⇒ c3 = −2c2
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Örnek: Ortonormal Fonksiyonlar 2

Son olarak g ’yi normalize edelim.

(g , g) = 1 ⇒
ˆ 1

0
|g |2 dx = 1

ˆ 1

0
(c2

2 + 2c2c3x + c2
3x

2)dx = 1(
c2

2x − 2c2
2x

2 +
4c2

2

3
x3

)1

0

= 1

c2 =
√

3 ⇒ c3 = −2
√

3

Sonuçta , f (x) = 1 ve g(x) =
√

3(1− 2x) fonksiyonları
0 ≤ x ≤ 1 aralığında ortonormal iki tane fonksiyondur.
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Sin(nx) ve Cos(nx) Fonksiyonları 1

n,m = 1, 2, 3, · · · olmak üzere 0 ≤ x ≤ 2π aralığında
{1, sin(nx), cos(nx)} kümesinin elemanlarını düşünelim.
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Sin(nx) ve Cos(nx) Fonksiyonları 2

Bunlar arasındaki skaler çarpımların sonuçları şöyledir.

ˆ 2π

0
(1∗)(1)dx = 2π

ˆ 2π

0
sin∗(nx) sin(mx)dx = πδnm

ˆ 2π

0
cos∗(nx) cos(mx)dx = πδnm

ˆ 2π

0
sin∗(nx) cos(mx)dx = 0

ˆ 2π

0
(1∗) sin(nx)dx = 0

ˆ 2π

0
(1∗) cos(nx)dx = 0

diklik
(ortogonallik)
bağıntıları

Burada sin∗(nx) = sin(nx) ve cos∗(nx) = cos(nx) ve 1∗ = 1.
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Sin(nx) ve Cos(nx) Fonksiyonları 3

Doğrulamak için şu bağıntıları kullanabiliriz.

sin(nx) sin(mx) =
1

2
[cos(n −m)x − cos(n + m)x ]

cos(nx) cos(mx) =
1

2
[cos(n −m)x + cos(n + m)x ]

sin(nx) cos(mx) =
1

2
[sin(n −m)x + sin(n + m)x ]

Diklik bağıntıları yardımıyla ortonormal bir küme yazabiliriz;{
1√
2π
, 1√

π
sin(nx), 1√

π
cos(nx)

}
.
´ 2π

0

[
1√
2π

] [
1√
2π

]
dx = 1

ˆ 2π

0

[
1√
π

sin(nx)

] [
1√
π

sin(mx)

]
dx = δnm

ˆ 2π

0

[
1√
π

cos(nx)

] [
1√
π

cos(mx)

]
dx = δnm ortonormallik

ˆ 2π

0

[
1√
π

sin(nx)

] [
1√
π

cos(mx)

]
dx = 0
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Sin(nx) ve Cos(nx) Fonksiyonları 4

Bölümün başında yaptığımız gibi 0 ≤ x ≤ 2π aralığında
tanımlı herhangi bir f (x) fonksiyonunu, bu ortonormal
fonksiyonlar cinsinden yazabiliriz.

f (x) = a′0
1√
2π

+
∞∑
n=1

{
a′n

1√
π

cos(nx) + b′n
1√
π

sin(nx)

}
Not: Bu açılımı temel vektör analizinden bildiğimiz aşağıdaki
basit ve temel bağıntıya benzetebilirsiniz.

~A = Ax ı̂+ Ay ̂+ Az k̂

Yani, 1√
2π
, 1√

π
cos(nx), 1√

π
sin(nx) fonksiyonları ı̂, ̂, k̂ ’ler gibi

ortonormal baz vektörler ve a′0, a
′
n, b
′
n katsayıları da

Ax ,Ay ,Az ’ler gibi bileşenlerdir.
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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Sin(nx) ve Cos(nx) Fonksiyonları 5

Burada henüz bilmediğimiz a′0, a
′
n ve b′n bileşenleri yerine

a′0/
√

2π = a0, a′n/
√
π = an ve b′n/

√
π = bn ataması yaparsak

bu açılım şu hale gelir.

f (x) = a01 +
∞∑
n=1

{an cos(nx) + bn sin(nx)}

Bu açılıma “Fourier serisi” denir. Buradaki a0, an, bn
katsayılarını bulmaya da Fourier analizi adı verilir.

Yukarıdaki diklik bağıntıları yardımıyla a0, an, bn katsayıları
hızlıca hesap edilebilir.
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Sin(nx) ve Cos(nx) Fonksiyonları 6

a0 =
1

2π
(1, f (x)) =

1

2π

ˆ 2π

0
f (x)dx

an =
1

π
(cos(nx), f (x)) =

1

π

ˆ 2π

0
f (x) cos(nx)dx

bn =
1

π
(sin(nx), f (x)) =

1

π

ˆ 2π

0
f (x) sin(nx)dx

Not: sin(nx) ile cos(nx) fonksiyonları

d2y

dx2
+ n2y = 0

diferansiyel denkleminin çözümleridir.
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Sin(nx) ve Cos(nx) Fonksiyonları 7

Tekrarlama Bağıntıları

Aşağıdaki biçimde verilen ifadelere tekrarlama bağıntıları denir.

• cos(2nx) = cos2(nx)− sin2(nx)

• sin(2nx) = 2 sin(nx) cos(nx)

• cos[(n + m)x ] = cos(nx) cos(mx)− sin(nx) sin(mx)

• sin[(n + m)x ] = sin(nx) cos(mx) + cos(nx) sin(mx)

• cos2(nx) + sin2(nx) = 1

• cos′(nx) = −n sin(nx)

• sin′(nx) = n cos(nx)

Bu bağıntılar, sinüs ve cosinüs içeren integrallerde sıkça
kullanılır. Örneğin, diklik bağıntılarını bunlar yardımıyla
doğrulamıştık.
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Kompleks Fourier Serisi

n,m = 0,±1,±2, · · · olmak üzere
{
e inx
}

kümesi, 0 ≤ x ≤ 2π
aralığında biri birine dik (ortogonal) fonksiyonlar kümesidir.

ˆ 2π

0

(
e imx

)∗
e inxdx =

ˆ 2π

0
e i(n−m)xdx = 2πδnm diklik

Diklik bağıntısı yardımıyla ortonormal bir küme oluşturabiliriz,{
1√
2π
e inx
}

. O halde, yine 2π periyodlu herhangi bir f (x)

fonksiyonunu e inx fonksiyonlarının toplamı olarak yazabiliriz.

f (x) =
+∞∑

n=−∞
cne

inx ⇐⇒ cn =
1

2π

ˆ 2π

0
f (x)e−inxdx

Yine, e inx fonksiyonları y ′′ + n2y = 0 diferansiyel denkleminin
çözümleridir. Burada ee

inx
= cos(nx) + i sin(nx), c0 = a0,

cn + c−n = an ve i(cn − c−n) = bn yazarsak yukarıdaki Fourier
serisini elde ederiz.
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Kompleks Fourier Serisinin Ötesi

Şimdi de kesikli n-parametresi, sürekli k-parametresi ile yer
değiştirsin. Bu durumda −∞ ≤ k ≤ +∞ olmak üzere
−∞ ≤ x ≤ +∞ aralığında e ikx fonksiyonları bir ortogonallik
bağıntısı sağlarlar.
ˆ +∞

−∞

(
e ik
′x
)∗

e ikxdx =

ˆ +∞

−∞
e i(k−k

′)xdx =

{
∞ k = k ′ ise
0 k 6= k ′ ise

k 6= k ′ olduğunda integralin sıfıra eşit olmasını
e i(k−k

′)x = e i`x = cos(`x) + i sin(`x), ` 6= 0, yazarak aşağıdaki
şekilden görebiliriz.
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Dirac Delta Fonksiyonu δ(x-x’)

Kesikli i-parametresinden sürekli x-parametresine geçtiğimizde

Ai −→ A(x) ,
∑
i

−→
ˆ

dx , δij −→ δ(x − x ′)

δij =

{
1 i = j ise
0 i 6= j ise

δij = δji∑
i

Aiδij = Aj∑
j

δij = 1

δ(x − x ′) =

{
∞ x = x ′ ise
0 x 6= x ′ ise

δ(x − x ′) = δ(x ′ − x)ˆ
A(x)δ(x − x ′)dx = A(x ′)

ˆ
δ(x − x ′)dx = 1

δ(x − x ′) fonksiyonu x = x ′ noktasında yüksekliği sonsuz,
genişliği “sıfır” ve altında kalan alanı 1 olan tuhaf bir Gauss
(çan) eğrisi gibi davranıyor. Dirac delta fonksiyonu, integral
işlemi altında “iyi” davranışlı olan ilginç bir fonksiyondur.
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Fourier Dönüşümü

e ikx fonksiyonlarının dikliğini (ortogonalliğini) artık δ(k − k ′)
ile ifade edebiliriz.
ˆ +∞

−∞

(
e ik
′x
)∗

e ikxdx =

ˆ +∞

−∞
e i(k−k

′)xdx = 2πδ(k − k ′)

Bu durumda 1√
2π
e ikx fonksiyonları ortonormaldirler. Böylece,

−∞ ≤ x ≤ +∞ aralığında tanımlı periyodik olmayan (veya
periyodu ∞ olan) herhangi bir f (x) fonksiyonunu bunların
“toplamı” olarak yazabiliriz.

f (x) =
1√
2π

ˆ +∞

−∞
g(k)e ikxdk

Buna g(k)’nın Fourier dönüşümü denir. Burada g(k)’yı f (x)
fonksiyonunun k-bileşeni gibi görebiliriz. g(k)’yi bulmak için
f (x)’i 1√

2π
e ikx ile skaler çarpalım.
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Ters Fourier Dönüşümü

g(k) =

(
1√
2π

e ikx , f (x)

)
=

1√
2π

ˆ +∞

−∞
e−ikx f (x)dx

Buna ters Fourier dönüşümü adı verilir. İki dönüşümün ve
tanımların tutarlılığını şöyle kontrol ederiz.

g(k) =
1√
2π

ˆ +∞

−∞
e−ikx

1√
2π

ˆ +∞

−∞
g(k ′)e ik

′xdk ′dx

=
1

2π

ˆ +∞

−∞
g(k ′)

{ˆ +∞

−∞
e i(k

′−k)xdx

}
dk ′

=
1

2π

ˆ +∞

−∞
g(k ′)2πδ(k − k ′)dk ′ = g(k)

Not: Diklik bağıntısında normalizasyon çarpanı olan 2π’yi biz
1/
√

2π olarak her iki integrale koyduk. Bazı kaynaklar 1/2π’yi
sadece x-integraline, bazıları da sadece k-integraline koyar.
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Örnek: Fourier Serisi 1

Uygulamalarda {1, sin(nx), cos(nx)} kümesinin elemanlarını
2π periyodlu f (x) fonksiyonunu sonsuz seri olarak yazmak için
kullanırız; f (x + 2π) = f (x). Genel olarak, x → 2πx/T
dönüşümüyle T periyodlu yeni bir ortogonal küme elde ederiz;{

1, sin
(
n2πx
T

)
, cos

(
n2πx
T

)}
. Örneğin 2L periyodlu aşağıdaki

kare dalgayı inceleyebiliriz.
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Örnek: Fourier Serisi 2

A bir sabit olmak üzere 2L periyodlu aşağıdaki kare dalga
fonksiyonunu −L ≤ x ≤ +L aralığında Fourier serisine açınız.

f (x) =

{
−A , −L ≤ x < 0 ise
+A , 0 < x ≤ +L ise

Dikkat! Bu fonksiyon antisimetrik; f (−x) = −f (x).

Çözüm: Önce −L ≤ x ≤ +L aralığında biri birine dik sinüs ve
kosinüs fonksiyonlarını belirleyelim.

´ +L
−L 1 sin

(
nπx
L

)
dx = 0,´ +L

−L 1 cos
(
nπx
L

)
dx = 0,

´ +L
−L 1dx = 2L,

ˆ +L

−L
sin
(nπx

L

)
sin
(mπx

L

)
dx = Lδnm

ˆ +L

−L
cos
(nπx

L

)
cos
(mπx

L

)
dx = Lδnm

ˆ +L

−L
sin
(nπx

L

)
cos
(mπx

L

)
dx = 0
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Örnek: Fourier Serisi 3

Not: −L ≤ x ≤ +L aralığında bunlardan başka ortogonal
sinüs ve kosinüs fonksiyonları olabilir. Biz burada x → 2πx/2L
dönüşümü yardımıyla diklik bağıntıları elde ettik. Bunu şuna
benzetebiliriz; bir vektör uzayında birden fazla ortonormal baz
bulabiliriz.

f (x) fonksiyonunu seçtiğimiz ortogonal fonksiyonlar cinsinden
yazabiliriz.

f (x) = a01 +
∞∑
n=1

an cos
(nπx

L

)
+
∞∑
n=1

bn sin
(nπx

L

)
a0’ı belirlemek için her terimi 1 ile skaler çarpalım.

ˆ +L

−L
f (x)dx = a0

ˆ +L

−L
dx +

∞∑
n=1

an

ˆ +L

−L
cos
(nπx

L

)
dx

+
∞∑
n=1

bn

ˆ +L

−L
sin
(nπx

L

)
dx



Giriş
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Örnek: Fourier Serisi 4

Soldaki integrali hesaplarız, sağdakileri diklik bağıntılarından
yazarız. f (x) tek fonksiyon olduğu ve integral simetrik aralıkta
alındığı için sol taraf sıfır olur.

0 = a02L + 0 + 0 ⇒ a0 = 0

am’yi belirlemek için her terimi cos
(
mπx
L

)
ile skaler çarpalım.

ˆ +L

−L
f (x) cos

(mπx
L

)
dx = a0

ˆ +L

−L
cos
(mπx

L

)
dx

+
∞∑
n=1

an

ˆ +L

−L
cos
(nπx

L

)
cos
(mπx

L

)
dx

+
∞∑
n=1

bn

ˆ +L

−L
sin
(nπx

L

)
cos
(mπx

L

)
dx
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Örnek: Fourier Serisi 5

Eşitliğin solundaki integral simetrik aralıkta ve f (x) cos
(
mπx
L

)
tek fonksiyon olduğu için sonucu sıfırdır. Sağındakilerin
sonuçlarını doğrudan diklik bağıntılarından yazarız.

0 = 0 +
∑
n

anLδnm + 0 ⇒ am = 0

Son olarak, bm’yi belirlemek için her terimi sin
(
mπx
L

)
ile skaler

çarpalım.
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Örnek: Fourier Serisi 6

ˆ +L

−L
f (x) sin

(mπx
L

)
dx = a0

ˆ +L

−L
sin
(mπx

L

)
dx

+
∞∑
n=1

an

ˆ +L

−L
cos
(nπx

L

)
sin
(mπx

L

)
dx

+
∞∑
n=1

bn

ˆ +L

−L
sin
(nπx

L

)
sin
(mπx

L

)
dx

Eşitliğin solundaki integral simetrik aralıkta ve f (x) sin
(
mπx
L

)
çift fonksiyon olduğu için aşağıdaki gibi yazabiliriz.
Sağındakilerin sonuçlarını doğrudan diklik bağıntılarından
yazarız.

2

ˆ L

0
A sin

(mπx
L

)
dx = 0 + 0 +

∑
n

bnLδnm
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Örnek: Fourier Serisi 7

Böylece,

2AL

mπ
[1− (−1)m] = Lbm ⇒ bm =

2A

mπ
[1− (−1)m]

bm =

{
4A
mπ m = 1, 3, 5, · · · ise
0 m = 2, 4, 6, · · · ise

Sonuçta, bize verilen f (x) fonksiyonu şöyle yazılabilir.

f (x) = b1 sin
(πx

L

)
+ b3 sin

(
3πx

L

)
+ b5 sin

(
5πx

L

)
+ · · ·

=
4A

π

[
1

1
sin
(πx

L

)
+

1

3
sin

(
3πx

L

)
+

1

5
sin

(
5πx

L

)
+ · · ·

]



Giriş

Vektörler

Kompleks
Sayılar ve
Fonksiyonlar

İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Örnek: Fourier Dönüşümü

g(k) = 1√
2π
e−ikx0 normalize fonksiyonunun Fourier

dönüşümünü hesap ediniz. x0 bir sabit.

Çözüm:

f (x) =
1√
2π

ˆ +∞

−∞
g(k)e ikxdk

=
1√
2π

ˆ +∞

−∞

1√
2π

e−ikx0e ikxdk

=
1

2π

ˆ +∞

−∞
e ik(x−x0)dk

= δ(x − x0)
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Legendre Polinomları 1

Aşağıdaki polinomlara Legendre polinomları denir.

P0(x) = 1

P1(x) = x

P2(x) =
1

2

(
3x2 − 1

)
P3(x) =

1

2

(
5x3 − 3x

)
...

P`(x) =
1

2``!

d`

dx`
(
x2 − 1

)`
Rodrigues formülü

Bu polinomlar, −1 ≤ x ≤ +1 tanım bölgesinde Legendre
diferansiyel denkleminin çözümleridir.

(1− x2)P ′′` − 2xP ′` + `(`+ 1)P` = 0



Giriş
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Legendre Polinomları 2

P`(x) polinomları, bu diferansiyel denklemin x = 0 noktası
civarındaki yakınsak seri çözümünün y(x = 1) = 1 şartıyla
elde edilen halidir. Normalizasyon katsayısı, 1

2``!
, bu koşulla

elde edilir.
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Legendre Polinomları 3

P`(x), `-yinci derece polinomdur ve belli bir paritesi vardır.

P`(−x) = (−1)`P`(x) ⇒ P`(−1) =

{
+1, ` = çift

−1, ` = tek

Ayrıca, ` = tek ise P`(0) = 0, fakat ` = çift ise P`(0) 6= 0.

Üretici Fonksiyon

Legendre polinomlarını elde etmenin Rodrigues formülünden
başka bir yolu da üretici fonksiyon kullanmaktır. |t| < 1 olmak
üzere φ(x , t) = 1/

√
1 + t2 − 2tx fonksiyonu P`(x)’in üretici

fonksiyonudur. φ(x , t) fonksiyonu t’ye göre t = 0 civarında
Taylor serisine açılırsa, t`’nin katsayısı P`(x)’i verir.

1√
1 + t2 − 2tx

=
∞∑
`=0

P`(x)t` üretici fonksiyon
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Legendre Polinomları 4

Tekrarlama Bağıntıları

P`(x) ile diğer P`−1(x),P`+1(x),P ′`(x), · · · polinomlarının
arasındaki ilişkilere denir.

(i) (`+ 1)P`+1(x)− (2`+ 1)xP`(x) + `P`−1(x) = 0

(ii)
dP`+1(x)

dx
− dP`−1(x)

dx
− (2`+ 1)P`(x) = 0

(iii)
dP`+1(x)

dx
− x

dP`(x)

dx
+ (`+ 1)P`(x) = 0

(iv) (x2 − 1)
dP`(x)

dx
− `xP`(x)− `P`−1(x) = 0

(v)
dP`(x)

dx
− 2x

dP`−1(x)

dx
+

dP`−2(x)

dx
− P`−1(x) = 0

(vi) x
dP`(x)

dx
− dP`−1(x)

dx
− `P`−1(x) = 0
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Legendre Polinomları 5

Bu bağıntıları elde etmek için üretici fonksiyonun seri açılım
ifadesi, Rodrigues formülü ve daha önce elde edilen üretici
fonksiyonlar kullanılabilir.

Diklik Bağıntısı

ˆ +1

−1
P`(x)P`′(x)dx =

2

2`+ 1
δ``′ =

{
2

2`+1 ` = `′ ise

0 ` 6= `′ ise

Bu durumda P`(x) =
√

2`+1
2 P`(x) polinomları ortonormaldir.

ˆ +1

−1
P`(x)P`′(x)dx = δ``′

−1 ≤ x ≤ +1 aralığında tanımlı olan P`(x) polinomları
ortogonal (dik) oldukları için bu aralıkta tanımlı herhangi bir
f (x) fonksiyonu P`(x)’lerin toplamı olarak yazılabilir.
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Legendre Polinomları 6

f (x) =
∞∑
`=0

c`P`(x)

Bunu ~A = Ax ı̂+ Ay ̂+ Az k̂ ifadesine benzetebiliriz. Yani, c`
katsayıları birer bileşen gibidirler. Bunları bulmak için f (x)
fonksiyonunu (vektörünü) Pm(x) ile skaler çarparız ve diklik
bağıntısını kullanırız.ˆ +1

−1
f (x)Pm(x)dx =

∞∑
`=0

c`

ˆ +1

−1
P`(x)Pm(x)dx

=
∞∑
`=0

c`
2

2`+ 1
δ`m

=
2

2m + 1
cm

cm =
2m + 1

2

ˆ +1

−1
f (x)Pm(x)dx
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Legendre Polinomları 7

İkinci Tür Legendre Fonksiyonları

P`(x) polinomları Legendre diferansiyel denkleminin birinci
çözümleridir. Diferansiyel denklem ikinci mertebe olduğu için
P`(x)’den lineer bağımsız bir çözüm daha vardır. Abel
yöntemiyle bunlar elde edilebilir. Bu çözümler Q`(x) ile
gösterilirler. Örneğin

P0(x) = 1 için Q0(x) =
1

2
ln

x + 1

x − 1

P1(x) = x için Q1(x) =
1

2
x ln

x + 1

x − 1
− 1

Q`(x) fonksiyonları x = ±1 noktalarında ıraksak oldukları için
fiziksel problemlerin çözümlerinde hiç yazılmazlar.
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Asosiye Legendre Fonksiyonları 1

(1− x2)P ′′` − 2xP ′` + `(`+ 1)P` = 0 , ` = 0, 1, 2, · · ·

Legendre diferansiyel denkleminin m-kere türevini alırsak ve

dmP`(x)

dxm
= (1− x2)−m/2Pm

` (x)

atamasını yaparsak, o zaman diferansiyel denklem aşağıdaki
biçime gelir.

(1− x2)
d2Pm

`

dx2
− 2x

dPm
`

dx
+

[
`(`+ 1)− m2

1− x2

]
Pm
` = 0

Buna asosiye (bağlantılı) Legendre diferansiyel denklemi denir.
Bu denklemin çözümü olan Pm

` (x)’lere de asosiye Legendre
fonksiyonları adı verilir.

Pm
` (x) = (1− x2)m/2 d

mP`(x)

dxm
, m ≤ `

Not: m = 0 için P0
` (x) = P`(x) olur.
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler

Özel
Fonksiyonlar

Kaynaklar

288/327

Asosiye Legendre Fonksiyonları 2

Burada P`(x)’in `-yinci derece polinom olduğunu hatırlarsak
m > ` için Pm

` (x) = 0 olduğunu görürüz.

Dikkat! m→ −m yazarsak diferansiyel denklem değişmiyor.
O halde, negatif m sayılarını da içerecek şekilde asosiye
Legendre fonksiyonlarını daha dikkatli yeniden yazıyoruz.

P
|m|
` (x) = (1− x2)|m|/2 d

|m|P`(x)

dx |m|

P
−|m|
` (x) = (−1)|m|

(`− |m|)!

(`+ |m|)!
P
|m|
` (x)

Burada ` = 0, 1, 2, · · · ve m = 0,±1,±2, · · · ,±`.

Asosiye Legendre diferansiyel denkleminin Pm
` (x)’lerden lineer

bağımsız ikinci çözümü de vardır ve Qm
` (x) ile gösterilir.

Ancak, bu çözümler x = ±1 noktalarında ıraksak oldukları için
fiziksel problemlerin çözümlerinde hiç kullanılmazlar.
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Asosiye Legendre Fonksiyonları 3

P
−|m|
` (x) tanımındaki (`−|m|)!

(`+|m|)! çarpanı seçime bağlıdır. Başka

kaynaklarda olmayabilir. Bu tanımlar altında Pm
` (x)

fonksiyonları aşağıdaki diklik bağıntısını sağlarlar.

ˆ +1

−1
Pm
n (x)Pm

` (x)dx =
2

2`+ 1

(`+ m)!

(`−m)!
δn` aynı m için

Pm
` (x)’ler için bir diklik bağıntısı varsa, −1 ≤ x ≤ +1

aralığında tanımlı herhangi bir f (x) fonksiyonunu bu
Pm
` (x)’lerin toplamı olarak yazabiliriz.

f (x) =
∞∑

`=|m|

c`P
|m|
` (x) sabit bir m için
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Küresel Harmonikler 1

Fizik ve mühendislik uygulamalarında aşağıdaki kısmi
diferansiyel denklemle sıkça karşılarız.

1

sin θ

∂

∂θ

(
sin θ

∂Ym
`

∂θ

)
+

1

sin2 θ

∂2Ym
`

∂ϕ2
+ `(`+ 1)Ym

` = 0

Burada θ ile ϕ küresel koordinatlardaki açı koordinatlarıdır.
Yani, 0 ≤ θ ≤ π ve 0 ≤ ϕ ≤ 2π. Başta ` keyfi bir sabittir.

Kısmi diferansiyel denklem önce değişkenlerine ayırma
yöntemiyle iki tane adi diferansiyel denkleme ayrılır;

Ym
` (θ, ϕ) = Θm

` (θ)Φm(ϕ)

Denklem şu hale gelir.

Φm

sin θ

d

dθ

(
sin θ

dΘm
`

dθ

)
+

Θm
`

sin2 θ

d2Φm

dϕ2
+ `(`+ 1)Θm

` Φm = 0
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Küresel Harmonikler 2

Denklemi sin2 θ/Θm
` Φm ile çarpalım ve düzenleyelim.

sin θ

Θm
`

d

dθ

(
sin θ

dΘm
`

dθ

)
+ `(`+ 1) sin2 θ︸ ︷︷ ︸

+m2

+
1

Φm

d2Φm

dϕ2︸ ︷︷ ︸
−m2

= 0

Burada m keyfi bir sabittir. Böylece θ ve ϕ için adi
diferansiyel denklemler elde edilir.

1

sin θ

d

dθ

(
sin θ

dΘm
`

dθ

)
+

[
`(`+ 1)− m2

sin2 θ

]
Θm
` = 0

d2Φm

dϕ2
+ m2Φm = 0
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Küresel Harmonikler 3

ϕ-denkleminin çözümünü Φm = ce imϕ olarak yazarız.
Tek-değerlilik koşulu Φm(ϕ+ 2π) = Φm(ϕ) bize
m = 0,±1,±2, · · · verir. Bu durumda Φm(ϕ)
fonksiyonlarından ortonormal bir küme elde edilir,
Φm = 1√

2π
e imϕ

ˆ 2π

0
Φ∗m(ϕ)Φm′(ϕ)dϕ = δmm′

θ-denkleminde cos θ = x ataması yaparsak üç-beş sayfa önce
yazdığımız asosiye Legendre denklemini elde ederiz. Bunun
çözümünü yaparken gördük ki ` = 0, 1, 2, · · · ve
m = 0,±1,±2, · · · ,±`. Asosiye Legendre fonksiyonlarını
sağladıkları diklik bağıntısı yardımıyla normalize edebiliriz.
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Küresel Harmonikler 4

Sonuçta Θm
` (θ)’lar normalize asosiye Legendre fonksiyonlarıdır

ve Φm(ϕ)’ler de ortonormal fonksiyonlardır. Bunların çarpımı
küresel harmonikleri oluşturur.

Y
|m|
` (θ, ϕ) = (−1)|m|

√
2`+ 1

4π

(`− |m|)!

(`+ |m|)!
P
|m|
` (cos θ)e i |m|ϕ

Y
−|m|
` (θ, ϕ) = (−1)|m|

[
Y
|m|
` (θ, ϕ)

]∗
Ym
` (θ, ϕ) küresel harmonikleri ortonormaldirler.

ˆ 2π

0

ˆ π

0
[Ym
` (θ, ϕ)]∗ Ym′

`′ (θ, ϕ) sin θdθdϕ = δ``′δmm′

Bazen kısaca şöyle yazılır.

ˆ
[Ym
` (θ, ϕ)]∗ Ym′

`′ (θ, ϕ)dΩ = δ``′δmm′
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Özel
Fonksiyonlar

Kaynaklar

294/327

Küresel Harmonikler 5

İlk bir kaç tane fonksiyonun açık biçimi şöyle olur.

Y 0
0 =

√
1

4π

Y 0
1 =

√
3

4π
cos θ

Y 1
1 = −

√
3

8π
sin θe iϕ

Y 0
2 =

√
5

16π
(3 cos2 θ − 1)

Y 1
2 = −

√
15

8π
sin θ cos θe iϕ

Y 2
2 =

√
15

32π
sin2 θe2iϕ
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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Küresel Harmonikler 6

Ym
` (θ, ϕ) küresel harmonik fonksiyonları ortonormal oldukları

için 0 ≤ θ ≤ π ve 0 ≤ ϕ ≤ 2π aralığında tanımlı herhangi bir
f (θ, ϕ) fonksiyonu bunların toplamı olarak yazılabilir.

f (θ, ϕ) =
∞∑
`=0

+∑̀
m=−`

c`mY
m
` (θ, ϕ)

Burada c`m katsayılarını (bileşenlerini) bulmak için f (θ, ϕ)
fonksiyonunu (vektörünü) Ym′

`′ (θ, ϕ) fonksiyonu (birim
vektörü) ile skaler çarparız.

ˆ [
Ym′
`′

]∗
f (θ, ϕ)dΩ =

∞∑
`=0

+∑̀
m=−`

c`m

ˆ [
Ym′
`′

]∗
Ym
` dΩ

=
∞∑
`=0

+∑̀
m=−`

c`mδ``′δmm′ = c`′m′
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Gamma Fonksiyonu 1

Buna faktöriyel fonksiyonu da denir.

Tanım: x > 0 için aşağıdaki gibi tanımlanır.

Γ(x) =

ˆ ∞
0

e−ttx−1dt

Özellik: Γ(x + 1) = xΓ(x)

Bunu görmek için Γ(x + 1) =
´∞

0 e−ttxdt inetgralinde kısmi
integrasyon yaparız

dv = e−tdt ve u = tx

Şimdi x tamsayı olsun, x = n = 1, 2, 3, · · · .

Γ(1) =

ˆ ∞
0

e−tdt = 1
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Gamma Fonksiyonu 2

Γ(1) = 1 = 0!

Γ(2) = Γ(1 + 1) = 1Γ(1) = 1 = 1!

Γ(3) = Γ(2 + 1) = 2Γ(2) = 2.1! = 2!

Γ(4) = Γ(3 + 1) = 3Γ(3) = 3.2! = 3!

...

Γ(n) = (n − 1)!

Şimdi de x yarım tamsayı olsun, x = n + 1
2 = 1

2 ,
3
2 ,

5
2 , · · · .

Γ (1/2) =

ˆ ∞
0

e−tt−1/2dt = 2

ˆ ∞
0

e−u
2
du =

√
π

Burada t = u2 atadık.
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Gamma Fonksiyonu 3

Γ(1/2) =
√
π

Γ(3/2) = Γ(1/2 + 1) =
1

2
Γ(1/2) =

1

2

√
π

Γ(5/2) = Γ(3/2 + 1) =
3

2
Γ(3/2) =

3.2.1

2.2.2

√
π

Γ(7/2) = Γ(5/2 + 1) =
5

2
Γ(5/2) =

5.4.3.2.1

2.4.2.2.2

√
π

...

Γ(n + 1/2) =
(2n − 1)!

22n−1(n − 1)!

√
π , n = 1, 2, 3, · · ·

Artık, Gamma fonksiyonuna niçin faktöriyel fonksiyonu dendiği
açıklığa kavuşmuştur!
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Özel
Fonksiyonlar

Kaynaklar

299/327

Bessel Fonksiyonları 1

Aşağıdaki denklem, Bessel diferansiyel denklemi olarak bilinir.

x2y ′′ + xy ′ + (x2 − ν2)y = 0 , ν = sbt

Bu denklemle fen ve mühendislik bilimlerinde çok sık karşılarız.
İkinci mertebe ve lineer diferansiyel denklem olduğu için genel
çözüm iki tane lineer bağımsız fonksiyonun (çözümün)
toplamıdır.

y(x) = a1Jν(x) + a2Yν(x) , ai = sbt

İki fonksiyonun lineer bağımsızlığı Wronskiyen ile kontrol edilir.

W = Jν(x)Y ′ν(x)− J ′ν(x)Yν(x) 6= 0

Literatürde Jν(x)’e 1. tür Bessel fonksiyonu, Yν(x)’e 2. tür
Bessel fonksiyonu (veya Neumann fonksiyonu veya Weber
fonksiyonu) denir. Yν(x) yerine bazen Nν(x) ile gösterilir.
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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1. Tür Bessel Fonksiyonu 1

Bessel diferansiyel denkleminin seri çözümünü yaptığımızda
büyük indis kökünü kullanarak ilk çözümü yazmıştık.

y1(x) = c0x
ν

[
1− 1

1!

1

(ν + 1)

(x
2

)2
+

1

2!

1

(ν + 1)(ν + 2)

(x
2

)4

−+ · · ·+ 1

p!

(−1)p

(ν + 1)(ν + 2) · · · (ν + p)

(x
2

)2p
]

Burada p = 0, 1, 2, · · · . Şimdi c0 = 1
2νν! yazılırsa, bu sonsuz

seriye “1. Tür Bessel Fonksiyonu” denir ve Jν(x) ile gösterilir.

Jν(x) =
∞∑
p=0

(−1)p

p!Γ(p + ν + 1)

(x
2

)2p+ν

Burada (p + ν)! = Γ(p + ν + 1) kullandık.
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1. Tür Bessel Fonksiyonu 2

Bundan sonrasında ν sabitinin tamsayı veya yarım tamsayı
veya bunlardan farklı bir sayı olması önemlidir.

ν=n=tamsayı Olduğunda

Genliği ve periyodu değişen harmonik bir davranış var.
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1. Tür Bessel Fonksiyonu 3

Jn(x) = 0 olan birçok x var; Jn(xnk) = 0 ifadesinde xnk
sembolü, n-yinci Bessel’in k-yinci sıfırını veren x demektir.

Üretici Fonksiyon

Tam sayılı 1. tür Bessel fonksiyonlarını elde etmenin seri
formülünden başka bir yolu da üretici fonksiyon kullanmaktır.

φ(x , t) = e
x
2 (t− 1

t ) fonksiyonu Jn(x)’in üretici fonksiyonudur.
φ(x , t) fonksiyonu t’ye göre t = 0 civarında Taylor serisine
açılırsa, tn’nin katsayısı Jn(x)’i verir.

e
x
2 (t− 1

t ) =
∞∑

n=−∞
Jn(x)tn
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1. Tür Bessel Fonksiyonu 4

Tekrarlama Bağıntıları

Aşağıdaki bağıntıların hepsi tamsayı olsun ya da olmasın bütün
ν değerleri için geçerlidir.

(i) Jν+1(x) + Jν−1(x)− 2ν

x
Jν(x) = 0

(ii) 2J ′ν(x)− Jν−1(x) + Jν+1(x) = 0

(iii) (xνJν(x))′ − xνJν−1(x) = 0

(iv) Jν+1(x)− ν

x
Jν(x) + J ′ν(x) = 0
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2. Tür Bessel Fonksiyonu 1

Diferansiyel denklemlerin seri çözümlerini öğrenirken Fuchs
Teorisinde gördük ki indis kökleri tamsayı olduğunda küçük
indis kökü ilk çözüme lineer bağlı bir fonksiyon verir. Bunu
Bessel diferansiyel denkleminde açıkça görürüz.

J−n(x) = (−1)nJn(x) , (n = 0, 1, 2, · · · )

Yani, m1 = ν = n büyük indis kökü Jn(x) çözümünü verirken,
m2 = −ν = −n küçük indis kökü J−n(x) çözümünü verir ki
bu da Jn(x)’e lineer bağımlıdır.

Bu durumda, Jν(x)’den lineer bağımsız olan Bessel diferansiyel
denklemini sağlayan ikinci çözümü şöyle yazabiliriz.

Yν(x) =
cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
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2. Tür Bessel Fonksiyonu 2

Bu fonksiyon ν’nun bütün değerleri (tamsayı da dahil) için
Bessel diferansiyel denkleminin ikinci çözümüdür.

Aşağıda Y0(x),Y1(x), · · · ,Y6(x) fonksiyonlarının grafikleri
vardır.
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2. Tür Bessel Fonksiyonu 3

Yn(x) fonksiyonu orijinde ıraksaktır. Jn(x) her yerde
düzgündü. Neumann fonksiyonunda da genliği ve periyodu
değişen harmonik bir davranış var. Yn(x) = 0 olan birçok x
var; Yn(xnk) = 0 ifadesinde xnk sembolü, n-yinci Neumann’ın
k-yinci sıfırını veren x demektir.

Fizik ve mühendislik uygulamalarında genellikle x = 0 noktası
da tanım bölgesinde olduğu için ve Yn(0) = −∞ olduğu için
bu çözüm otomatik olarak düşer. O yüzden, çoğunlukla bu
fonksiyonu Bessel diferansiyel denkleminin çözümlerinde
görmeyiz.
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Küresel Bessel Fonksiyonları 1

Bessel diferansiyel denkleminde ν = 1
2 ,

3
2 ,

5
2 , · · · yarım tamsayı

olursa çözüm trigonometrik fonksiyonlar cinsinden yazılabilir.

x2y ′′ + xy ′ +

[
x2 −

(
n +

1

2

)2
]
y = 0 , n = 0, 1, 2, · · ·

Bu denklemin çözümü şöyle yazılır.

y(x) = a1Jn+1/2(x) + a2Yn+1/2(x)

Örneğin n = 0 için

J1/2(x) =

√
2

πx
sin x ve Y1/2(x) = −

√
2

πx
cos x
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Küresel Bessel Fonksiyonları 2

Bu denklemde y(x) =
√
xR(x) ataması yaparsak küresel

Bessel diferansiyel denklemini elde ederiz.

x2R ′′ + 2xR ′ +
[
x2 − n (n + 1)

]
R = 0 , n = 0, 1, 2, · · ·

Aynı dönüşümü yukarıdaki çözümde de yaparak küresel Bessel
diferansiyel denkleminin çözümünü yazabiliriz.

R(x) = a′1

√
2

πx
Jn+1/2(x)︸ ︷︷ ︸
jn(x)

+a′2

√
2

πx
Yn+1/2(x)︸ ︷︷ ︸
nn(x)

Burada jn(x) ve nn(x) fonksiyonlarına küresel Bessel
fonksiyonları denir.

jn(x) = (−1)n
dn

dxn
sin x

x
ve nn(x) = (−1)n+1 dn

dxn
cos x

x
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Küresel Bessel Fonksiyonları 3

Birkaç tanesini açıkça yazalım.

j0(x) =
sin x

x
, j1(x) =

sin x

x2
− cos x

x

n0(x) = −cos x

x
, n1(x) = −cos x

x2
− sin x

x

Her ikisi de harmonik davranıyor. Sadece nn(x) fonksiyonu
orijinde ıraksak.
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Genelleştirilmiş Bessel Diferansiyel Denlemi

Bessel diferansiyel denklemini ve çözümü

x2y ′′ + xy ′ + (x2 − ν2)y = 0

y(x) = a1Jν(x) + a2Yν(x)

Her ikisinde x = kr atayalım, k > 0 sabit.

r2 d
2y

dr2
+ r

dy

dr
+ (k2r2 − ν2)y = 0

y(r) = a1Jν(kr) + a2Yν(kr)

Burada r = zβ ve y(r) = zαu(z) atayalım.

z2 d
2u

dz2
+ (1 + 2α)z

du

dz
+ (k2β2z2β + α2 − ν2β2)u = 0

u(z) = a1z
−αJν(kzβ) + a2z

−αYν(kzβ)
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Modifiye Bessel Fonksiyonları 1

Uygulamalarda

r2 d
2y

dr2
+ r

dy

dr
+ (k2r2 − ν2)y = 0

denkleminde bazen k2 → −k2 olur. Matematik açıdan k → ik
yazmak bu atamaya eşdeğerdir.

r2 d
2y

dr2
+ r

dy

dr
− (k2r2 + ν2)y = 0

Şimdi sadelik için kr = x yazalım.

x2y ′′ + xy ′ − (x2 + ν2)y = 0 , ν = sbt

modifiye Bessel diferansiyel denklemidir. Çözümü şudur.

y(x) = a1Iν(x) + a2Kν(x)
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Modifiye Bessel Fonksiyonları 2; k2 → −k2

Burada Iν(x) ve Kν(x)’e modifiye Bessel fonksiyonları denir.

Iν(x) = i−νJν(ix) ve Kν(x) =
π

2

I−ν(x)− Iν(x)

sin(νπ)

Her ikisi de harmonik davranmıyor. Iν(x) düzgün artıyor ve
sonsuzda ıraksak. Kν(x) düzgün azalıyor ve orijinde ıraksak.
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Bessel Fonksiyonlarının Dikliği 1

Jm(kx) ve Jm(lx) fonksiyonları aşağıdaki Bessel diferansiyel
denklemlerinin çözümleri olsun.

x2J ′′m(kx) + xJ ′m(kx) + (k2x2 −m2)Jm(kx) = 0

x2J ′′m(lx) + xJ ′m(lx) + (l2x2 −m2)Jm(lx) = 0

Birinci denklemi −Jm(lx) ile, ikinciyi Jm(kx) ile çarpalım ve iki
denklemi toplayalım. Çıkan sonucu düzenleyelim ve 0 ≤ x ≤ a
aralığında integralini alalım.

ˆ a

0
xJm(kx)Jm(lx)dx =

a

k2 − l2
[
Jm(ka)J ′m(la)− Jm(la)J ′m(ka)

]
Bu integrali diklik bağıntısı olarak kullanmak istediğimiz için
k 6= l iken sonucun sıfır olmasını isteriz. Bu, iki türlü olabilir.

1 Jm(kma) = Jm(lma) = 0 Dirichlet sınır şartı

2 J ′m(kma) = J ′m(lma) = 0 Neumann sınır şartı
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Bessel Fonksiyonlarının Dikliği 2

l = k durumu için yukarıdaki integrali hesap ederiz.
ˆ a

0
xJ2

m(kx)dx =
1

2k2

{
(k2a2 −m2)J2

m(ka) + ka2[J ′m(ka)]2
}

Dirichlet sınır şartında, Jm(kma) = 0, ilk terim düşer,
Neumann sınır şartında, J ′m(kma) = 0, ikinci terim düşer.

İki integral sonucunu δkl yardımıyla bir inetgralde birleştirerek
Bessel fonksiyonlarının diklik bağıntısını yazarız.

Dirichlet sınır şartı varsa, Jm(kma) = 0

ˆ a

0
xJm(kx)Jm(lx)dx =

a2

2k
[J ′m(ka)]2δkl

Neumann sınır şartı varsa, J ′m(kma) = 0

ˆ a

0
xJm(kx)Jm(lx)dx =

k2a2 −m2

2k2
J2
m(ka)δkl
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Bessel Fonksiyonlarının Dikliği 3

Jm(kx) fonksiyonları harmonik davranıyordu ve birçok sıfırı
vardı. Yani, Jm(kma) = 0 ifadesini Jm(kmpa) = 0 olarak
yazarız; kmp ile m-yinci Bessel’in p-yinci sıfırını gösteririz.

Benzer olarak J ′m(kx) fonksiyonları da harmonik davranır ve
birçok sıfırı vardır. J ′m(kma) = 0 ifadesini J ′m(kmpa) = 0 olarak
yazarız; kmp ile m-yinci Bessel’in türevinin p-yinci sıfırını
gösteririz.

Sonuçta Bessel fonksyonlarının diklik bağınıtısını şöyle de
yazabiliriz. Dirichlet sınır şartı varsa, Jm(kmpa) = 0

ˆ a

0
xJm(kmpx)Jm(kmqx)dx =

a2

2kmp
[J ′m(kmpa)]2δpq

Neumann sınır şartı varsa, J ′m(kmpa) = 0

ˆ a

0
xJm(kmpx)Jm(kmqx)dx =

k2
mpa

2 −m2

2k2
mp

J2
m(kmpa)δpq
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Sorular ve Çözümler

Soru: f (x) = x2 fonksiyonunu −L ≤ x ≤ +L aralığında
T = 2L periyotlu trigonometrik fonksiyonlar cinsinden Fourier
serisine açınız.

Cevap: Bu notasyonda ve periyotta Fourier serisi şöyledir.

f (x) = a0 +
∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
Burada f (x) = x2 için −L ≤ x ≤ +L aralığında a0, an ve bn
hesap edelim.

a0 =
1

2L

ˆ +L

−L
x2dx =

1

L

ˆ L

0
x2dx =

L2

3

an için hesap yapalım.
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Sorular ve Çözümler

an =
1

L

ˆ +L

−L
x2 cos

(nπx
L

)
dx =

2

L

ˆ L

0
x2 cos

(nπx
L

)
dx

Burada kısmi integral hesabı yapalım.

u = x2 → du = 2xdx

dv = cos
(nπx

L

)
dx → v =

L

nπ
sin
(nπx

L

)
Şimdi an şöyle olur.

an =
−4

nπ

ˆ L

0
x sin

(nπx
L

)
dx

Burada tekrar kısmi integral yapalım.

u = x → du = dx

dv = sin
(nπx

L

)
dx → v =

−L
nπ

cos
(nπx

L

)
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Sorular ve Çözümler

Böylece an tam olarak hesap edilmiş oldu.

an =

(
2L

nπ

)2

cos(nπ) =

(
2L

nπ

)2

(−1)n

Simetrik aralık ve çift fonksiyon olduğu için bn = 0 olur.

bn =
1

L

ˆ +L

−L
x2 sin

(nπx
L

)
dx = 0

Sonuçta,

x2 =
L2

3
+

(
2L

π

)2 ∞∑
n=1

(−1)n

n2
cos
(nπx

L

)
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Sorular ve Çözümler

Soru: a > 0 bir sabit olmak üzere f (x) = e−ax
2

fonksiyonunu
−∞ ≤ x ≤ +∞ aralığında normalize ediniz. Normalize f (x)
fonksiyonunun Fourier dönüşümünü bulunuz.

Cevap: Normalizasyon
(
f (x), f (x)

)
= 1, yani

N2
´ +∞
−∞

∣∣f (x)
∣∣2dx = 1 burada N normalizasyon katsayısı.

N2

ˆ +∞

−∞
e−2ax2

dx = N2

√
π

2a
⇒ N =

(
2a

π

)1/4

f (x) =

(
2a

π

)1/4

e−ax
2

Şimdi de Fourier dönüşüm integralini yazalım ve hesap edelim.
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İntegral
Hesapları

Matrisler

Diferansiyel
Denklemler
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Sorular ve Çözümler

g(k) =
1√
2π

ˆ +∞

−∞
f (x)e−ikxdx

=
1√
2π

(
2a

π

)1/4 ˆ +∞

−∞
e−ax

2−ikxdx

=
1√
2π

(
2a

π

)1/4 ˆ +∞

−∞
e
−a
[
(x+ ik

2a)
2−( ik

2a)
2
]
dx

=
1√
2π

(
2a

π

)1/4

e−
k2

4a

ˆ +∞

−∞
e−a(x+ ik

2a)
2

dx

=
1√
2π

(
2a

π

)1/4

e−
k2

4a

√
π

a

=

(
1

2πa

)1/4

e−k
2/4a
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Vektörler

Kompleks
Sayılar ve
Fonksiyonlar
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Sorular ve Çözümler

Soru: 0 ≤ θ ≤ π ve 0 ≤ ϕ ≤ 2π aralığında tanımlı aşağıdaki
fonksiyonu küresel harmonikler cinsinden yazınız.

f (θ, ϕ) = cos2 θ + sin θ cosϕ+ 1

Cevap: İhtiyacımız olan küresel harmonikleri açıkça yazalım.

Y 0
0 =

√
1

4π
, Y 1

1 = −
√

3

8π
sin θe iϕ

Y−1
1 =

√
3

8π
sin θe−iϕ , Y 0

2 =

√
5

16π
(3 cos2 θ − 1)

Buna göre şunları yazabiliriz.

Y 0
2 =

√
5

16π
(3 cos2 θ − 1) ⇒ cos2 θ =

1

3

√
16π

5
Y 0

2 +
1

3

sin θ cosϕ =
1

2

√
8π

3

(
Y−1

1 − Y 1
1

)



Giriş
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Sorular ve Çözümler

O halde

f (θ, ϕ) =
1

3

√
16π

5
Y 0

2 +
1

2

√
8π

3

(
Y−1

1 − Y 1
1

)
+

4

3

yazabiliriz. Son terimi de

Y 0
0 =

√
1

4π
⇒ 1 =

√
4πY 0

0

yardımıyla yeniden yazarsak sonuç

f (θ, ϕ) =
1

3

√
16π

5
Y 0

2 +
1

2

√
8π

3

(
Y−1

1 − Y 1
1

)
+

4
√

4π

3
Y 0

0

olur.
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Sorular ve Çözümler

Soru: Aşağıdaki integrali Laguerre polinomlarının tekrarlama
ve diklik bağıntılarını kullanarak hesaplayınız.

I =

ˆ ∞
0

e−xxLp(x)Lp+1(x)dx =?

Cevap: Laguerre polinomlarının tekrarlama bağıntısını

Lp+1(x)− (2p + 1− x)Lp(x) + p2Lp−1 = 0

kullanarak şunu yazarız.

xLp(x) = −Lp+1(x) + (2p + 1)Lp(x)− p2Lp−1

Bunu sorulan integralde yerine yazalım:

I =

ˆ ∞
0

e−x [xLp(x)] Lp+1(x)dx
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Sorular ve Çözümler

I =−
ˆ ∞

0
e−xLp+1(x)Lp+1(x)dx

+ (2p + 1)

ˆ ∞
0

e−xLp(x)Lp+1(x)dx

− p2

ˆ ∞
0

e−xLp−1(x)Lp+1(x)dx

Bu aşamada diklik bağıntısını kullanalım.
ˆ ∞

0
e−xxLp(x)Lm(x)dx = (p!)2δpm

İkinci ve üçüncü integraller sıfırdır birinci integral de
[(p + 1)!]2 dir. O halde sonuç şöyledir:

ˆ ∞
0

e−xxLp(x)Lp+1(x)dx = − [(p + 1)!]2
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