KLASIK MEKANIK:

S1 |82 T

1. | uzunlugundaki sabit bir ipin ucuna mi ve m; kiitleleri sekildeki gibi

baglanmistir. m; kiitlesi siirtiinmesiz masa iizerinde hareket edebilmektedir.
my kiitlesi ise masanin ortasindan agilan bir delikten sarkitilan ipin diger

ucuna baglanmis olup diisey eksende hareket edebilmektedir.

a) Uygun genel koordinatlari segerek sistemin kinetik ve potansiyel
enerjilerini yaziniz.

b) Lagrange denklemini yazarak hareket denklemlerini bulunuz

¢) Hamilton ve Hamilton hareket denklemlerini yazarak, radyal ve agisal dogrultuda momentum

korunumlarin1 ve enerjinin korunumunu inceleyiniz.

2. a) Merkezi kuvvet etkisi altinda hareket eden bir parcacik i¢in alansal hizin (Kepler’in ikinci yasasi)
sabit oldugunu gosteriniz.

b) m kiitleli bir parcacigi, (A pozitif sabit) ile verilen yoriingede hareket ettirecek kuvvet kanununu bulunuz.

Faydal bilgi; U=1/r olmak {izere orbit denklemi;

f(/u) =—1- (44 +u)
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KUANTUM MEKANIGI:

S1 | S2 T

0O i O 1—1i
1. H=¢ (—i 0 O ) ve|y) = % <1 — i> Bir fiziksel sistemin Hamiltonyeni ve durum vektorii
0o 0 -1 1

verilmistir.

Burada ¢ enerji boyutunda bir sabittir.
a) Enerji olgiildiigiinde hangi olasiliklarla ne 6l¢tiliir?

b) Hamiltonyenin beklenen degerini, (H), hesap ediniz.

2. Iki tane sert kiiresel parcaciktan olusan yalitilmis sistemde birinci par¢acigin yarigap: a/2 ve kiitlesi
m,, ikinci pargacigin yarigapt a/2 Ve kiitlesi m, olsun. Parcaciklar biri birine degmiyorsa
etkilesmiyorlar, degince de sert olduklari igin aralarindaki etkilesme potansiyel enerjisi sonsuz oluyor.

a) 7; vektorii m;’in konumu, 7, vektorii de m,’nin konum vektorii olmak iizere bu iki-pargacikli

yalitilmis sistemin Hamilton operatdriinii yaziniz.

b) Sistemin Hamilton operatoriinii kiitle merkezi ve bagil koordinatlarda yaziniz.

¢) Bu sistem i¢in zamandan bagimsiz Schrédinger denklemini ¢6ziiniiz.



PAMUKKALE UNIVERSITESI, FiZiK BOLUMU,
18.06.2021 TARIHLI DOKTORA YETERLILIK SINAVI,
KUANTUM FizZiGi SORULARI VE CEVAPLARIDIR

Soru: Bir fiziksel sistemin Hamiltonyeni ve durum vektorii verilmigtir.
0 2 0 1—1
H=¢|—-i 0 0 ve [Y)=—|1-1

0 0 —1

Burada ¢ enerji boyutunda bir sabittir. (a) Enerji 6lgiildiigiinde hangi olasiliklarla ne dl¢iiliir? (b)

Hamiltonyenin beklenen degerini, (H), hesap ediniz.

Cevap: Once H matrisini kullanarak enerji 6zdegerlerini ve bunlara karsilik normalize 6zvekorleri

bulalim.
- g 0 a
Hg)y= () ) = | —i —x 0 p| =0
~~
ozdeger 0 0 —-1-A ¢

Sifirdan farkl a, b, ¢ i¢in katsayilar matrisinin determinanti sifir olmalhdir.
-\ i 0
—i =\ 0 |=0 = A+ -1D=0 = MN=1, X=X=-1
0 0 —-1-2A\

H’nin ozdegerleri € ve —e oldu. Burada —e 6zdegeri iki-kathdir.

Once \; = +1 (veya ) 6zdegerine karsilik gelen 6zvektorii, |¢1), bulalim.

- —1 0 bl =0 — ay :ibl, 01:()

1
Normalizasyon: |ai|* + |1 + |’ =1 = «a :L, bp=—, =0
Y |ar | |01 c1] 1 /2 1 /2 1
O halde, normalize |¢;) sudur.
. 1
- — 1
|¢1> \/5
0
Benzer adimlarla Ay = —1 (veya —¢) dzdegerine kargihik gelen 6zvektori, |¢o), bulalim.
1 2 as
- 1 0 by | =0 = ay=—iby, 0=0
0 00 Cy

Normalizasyon: |ao|” + |bo]* + |co)* =1 = 22 +c2=1



Ortonormal bir {|¢1), |#2), |¢s)} kiimesi icin iki secenek var. Eger ¢, = 0 olursa, ay = —i/v/2 ve
by = 1/v/2. Bu durumda, normalize |¢,) sudur.

1
|p2) = NG

Eger by = 0 olursa, as = 0 ve ¢ = 1. Bu durumda, normalize |¢3) sudur.
0
[¢3) =] 0
1

(a) Simdi durum vektoriinii, ortonormal 6zvektorler cinsinden yazariz.

[V) = ci|p1) + ca|pa) + csleh3)

Buradaki ¢; katsayilarini hesap edebiliriz.

1—1
1 1 21
C1—<¢1|¢>—E<—Z 1 0)7 ]._Z 7_\/1—0
1 L 2
CQ:<¢2’¢>:E(Z' 1 O)ﬁ 1—2 :\/—1_0

¢s = {(0slv) = (0 0 1)% 1| =
1

Bu katsayilarin mutlak kareleri sistemin ilgili 6zdurumda olma olasiligini verir.

4
P = |cl|2 =15 = %40 olasilikla enerji  E; = ¢ Olgiiliir.
6
Py = |co)* 4 |es)* = — = %60 olasihikla enerji  Ey = —¢  6lgiilir.

10
(b) Enerjinin beklenen degerini iki yolla hesaplayabiliriz.

(H) = PE, + Py, = (%) () + (§) (—e)= %

ikinci yontem (H) = (1| H|¢)) kullanmaktar.
0 2 0 1—1
- 1

(H>=E<1—|—z 1+ 1)6 - 0
0 0 —1 1



Soru: Iki tane sert kiiresel parcaciktan olusan yalitilmis sistemde birinci parcacigin yaricapi a/2 ve
kiitlesi my, ikinci parcacigin yarigapt a/2 ve kiitlesi my olsun. Pargaciklar biri birine degmiyorsa
etkilesmiyorlar, degince de sert olduklari i¢in aralarindaki etkilesme potansiyel enerjisi sonsuz
oluyor. (a) 77 vektorii m;’in konumu, 7% vektorii de mo’nin konum vektorii olmak iizere bu iki-
parcacikli yalitilmig sistemin Hamilton operatoriinii yaziniz. (b) Sistemin Hamilton operatoriini
kiitle merkezi ve bagil koordinatlarda yazimiz. (c) Bu sistem i¢in zamandan bagimsiz Schrodinger

denklemini ¢6ziiniiz.
Cevap: (a) Sistemin potansiyel enerjisi goyle yazilabilir.
L 0 , |1 —7% >a igin
V(r, ) = L .
oo , | =T <a igin

Buna gore sistemin Hamilton operatorii agsagidaki gibi olur.

-2 2
2 P1 D2 o
H=—+—"+V -
o + ima + V (|F1 = 72)
Konum uzaymda p; = —ihV ve Py = —ihV, oldugu i¢in zamandan bagimsiz Schrodinger den-

klemi

A

HY(7, 1) = EV (), T5)

degiskenlerine ayrilamaz.

(b) Bu sebeple KM (kiitle merkezi) koordinatina, R, ve bagil koordinata, 7, geceriz.

S MYT 4 Moty S 5 o
R=— == ve =17 — Ty
m1 + mao

Buradan ters koordinat doniistim bagintilarini yazalim.

~ m ~ m
MR —T2 ¢ v ooy
mi + Mo mi + Mo
Bu asamada sistemin toplam kiitlesini, M = my 4+ ms, ve indirgenmis kiitlesini, m = 7:111752,
tanimlamak iglemleri sadelestirir. Indirgenmis kiitle % = m% + m% olarak da yazilabilir. Bu

tammlarm yardiumyla (7, 7) ve (R, ) koordinatlarmda momentum vektérlerini yazahm.

—

ﬁ1=m17'71, p2=m27%2> ﬁZMﬁ; ﬁ:m?
Vektorlerin tizerindeki noktalar, zamana gore tiirevi temsil etmektedir. Simdi de yukaridaki bagin-

tilarin ve bu tanimlarin yardimiyla (p7, ps)’yi (15, p) cinsinden ifade edelim.

= N mo — .
1=—P+p ve pgzﬁzp—p

Bunlarin karalerini alip (a) sikkindaki Hamilton operatoriine yelestirirsek ]3]5' ile orantili terim

kaybolur.



(¢) (R,7) koordinatlarinda sistemin toplam Hamilton operatériinii, H, kiitle merkezi Hamilton
operatort, H kM, ile bagil Hamilton operatoriiniin toplami olarak H, olarak ayirabiliriz, H =
Hiers + Hy.

. P2 . P2

Hynp = — i - P
KM = 537 ve b 2m+v(7’)

Bu durumda sistemin dalga fonksiyonunu iki fonksiyonun ¢arpimi olarak yazarak zamandan bagim-

s1iz Schrodinger denklemini degiskenlerine ayirmak miimkiin olur.

\I/(ﬁ, F) = ?/)KM(E)%(F)

Zamandan bagimsiz Schrédinger denklemini agik¢a yazalim.

-,

2 -2

— p = = B —
Sap VR + S W)+ V)U(R, ) = BY(R, )

Burada P = —ihV(R) ve j = —ihV(7), dolayisiyla P2 = —h2V2(R) ve % = —h2V2(F), oldugu

icin denklem gu hale gelir.

B2 (7)
2M

P2 (R)

oV O0() + V() brear (R)n(7) = Bicns (R)in(7) = 0

VA(R)xm(R) -

Her terimi s (R)(7) ile bolelim.

R VA(R)wu(R) B2 VA(P)(7)
2M Yyr(R) N 2m  y(7)

=E,

+V(r)—E =0

=Er M
Simdi sistemin zamandan bagimsiz Schrodinger denklemi, sirasiyla, kiitle merkezi Schrodinger

denklemi ve bagil Schrodinger denklemi olarak ayrigti.

2
h?

— 5 VA7) + V(r)(7) = Byt (7)

Burada ii¢ tane sabit arasinda F = Ex; + E iligkisi vardir.

Kiitle merkezi denklemi, 3 boyutta serbestce hareket eden M kiitleli parcacigin zamandan bagimsiz
Schrodinger denklemi bigimindedir ve ¢ozlimii diizlem dalgadir.

 2MEx

Vin(R) = AciKR burada K? 72

>0

Yukarida A integral sabiti ve K dalga vektoridiir.



Bagil denklem, 7 konumundaki m kiitleli ve V' (r) potansiyel enerjisine sahip bir par¢acigm 3
boyutlu zamandan bagimsiz Schrédinger denklemine egdegerdir. Bagta 7 ve 75 cinsinden yazdigimiz

potansiyel enerji, 7 cinsinden soyle olur.

Vi(r) =

o , r<a icin

{O , T >a igin

Buna gore a yaricapli bir topun iginde potansiyel enerji sonsuz oldugu i¢in bu bélgede dalga
fonksiyonu sifirdir. Topun digsindaysa potansiyel enerji sifir oldugu i¢in m kiitleli parcacik serbesttir
ve dalga fonksiyonu diizlem dalga olacaktir. Ozetle,
Bett™ | p>q icin
() = .
0 , r<a i¢in
Burada B integral sabitidir ve dalga vektérii & ile bagil enerji 6zdegeri Ej, arasmda k* = 2mE, k2

>0 iligkisi vardir.



ELEKTROMANYETIK TEORI:
S1 | S2 T

1. Silindir bigiminde a yarigapli uzun bir telden gegen toplam lo akimu, telin kesiti {izerinde sabit
olmayip z ekseni boyunca Jf = a s Z ifadesiyle verilen akim yogunlugu vektorii ile tarif
edilmistir. Burada o bir sabit, s silindir eksenine dik 1sinsal dogrultudaki uzaklik ve 2 ise z ekseni

yoniindeki birim vektordiir. Telin i¢inde ve disinda, silindir eksenine dik tiim uzakliklar i¢in

manyetik alan1 hesaplayiniz.

f(VxB}-da:%B-d]:uan-da.

2. Baglangi¢ noktasina merkezlenmis olan R yarigapl bir kiiresel kabuk, k bir sabit olmak tizere
o(0)=Kksin0 yiizey ylik yogunlugu tagimaktadir. Kiireden ¢ok uzaklarda z ekseni tizerindeki bir

nokta i¢in yaklasik potansiyeli tek ve ¢ift kutup momentlerinden yola ¢ikarak hesaplayiniz.

o

dmeg r’

Vinon(¥) =

11, [,
Vdjp(r) — Fﬂ)r—zr—frp(r’)dt’.



EMT




EMT

S v‘(@’) =k §inCL

TN

| |

m
\—J \/éob;-—(—ga‘!r" S\T{(f”)éfa‘

G
&
T

U ) —L tp 2 ISI ,CL '
Leb Lt Sor L siner - da# Sing¥ ?/

0
-
View = R 2rr5§mz(}‘éoa'
Yrrée

U = 1 Ces ’Ld"
> p

S‘(\’L(}'l =

CamScanner ile tarandi



EAT
= \
\/QM"Q ; L';r_é Y Er'ccsd"c_“a") der !

—_

P (T
U = _-‘-—.. 1 I
e o Lemse'Lsineg R2SinG A deg'
g o0

Vot = Lam ?

Gmr Cor

A

\ A Swf’) =M

m
|
§ 5101(9' @S@'{Ad' =O
2 SN
O

CamScanner ile tarandi



ISTATISTIK MEKANIGI:

S1 |82 T

1. Baslangig sicakligi To olan bir mol tek atomlu ideal gaz baslangigtaki Vo hacminden 2Vo hacmine
cikiyor. Asagidaki iki farkli durum igin gazin yaptigi termodinamik isi ve gaz tarafindan sogurulan
enerjiyi hesaplayniz.

a) Sabit sicaklik altinda.
b) Sabit basing altinda.

2. Baslangig sicakligi To olan bir mol tek atomlu ideal gaz tersinir olarak baslangictaki Vo
hacminden 2Vo hacmine genisliyor.
a) Gazin entropisindeki degisimi,
b) Evrenin entropisindeki degisimi hesaplaymiz.
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KATIHAL FiziGi:

S1 | S2 T

1. Her biri, birinci ve ikinci en yakin komsularina, sirastyla K1 ve K2 yay sabitlerine sahip yaylarla baglh
olan 6zdes M Kkiitleli lineer bir zincirinin 6rgii uzaklig1 a’ dir.
a) Bu zincirin 6rgii titresimleri igin dispersiyon bagintisinin

Mw? = 2K{[1 — cos (qa)] + 2K,[1 F cos (2ka)]

Oldugunu,
b) Bu dispersiyon bagmtisinin uzun-dalgaboyu limitindeki ses dalgalari i¢in elde edilen dispersiyon
bagintisina indirgendigini,

¢) Grup hizinin g=+m/a’da sifir oldugunu goésteriniz.

2. Kiristallerde baglanma tiirlerini yazimz. Bunlari kisaca agiklayiniz.
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