13th International Congress on Advances in Civil Engineering, 12-14 September 2018, 1zmir/TURKEY

An Improved Differential Evolution Algorithm for Coordinated
Signalized Networks

C. Ozan!, O. Baskan?

1Department of Civil Engineering, Adnan Menderes University, Aydin, Turkey
2Department of Civil Engineering, Pamukkale University, Denizli, Turkey

Abstract

The optimization of traffic signal timings can be considered as one of mostly used traffic management methods,
controlling vehicle movements in order to decrease congestion. Thus, some indirect benefits can be gained by
improving safety, and decreasing pollution and fuel consumption. As known, traffic signal setting is a prominent
example of optimization field since it includes multi-objectives. Optimization of traffic signal timings is very
difficult issue especially in coordinated signalized networks due to offset term. Especially in last two decades,
meta-heuristic methods have been used by scientists rather than using exact methods to optimize signal timings
due to difficulty of the problem. Additionally, although meta-heuristic methods are able to solve this problem
without guarantee to achieve to a global solution, the performances of newly developed methods should be
investigated to provide better solutions in particular with less computational effort. In this study, an improved
differential evolution algorithm is proposed with two improvement strategies to optimize traffic signal timings in
coordinated signalized networks. The performance comparison of improved and classical differential evolution
methods has been conducted on a simple road network. Results showed that improved version outperforms the
classical differential evolution algorithm in terms of objective function value and computational effort.
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1 Introduction

Traffic signal control can be considered as one of the effective ways of traffic management in urban roads. In
fact, one of the subjects of traffic signal control is optimization of traffic signal timings. It is clear that this is a
prominent example of multi-objective optimization problems because of including different direct and indirect
objectives. Some valuable methods to solve this multi-objective problem have been proposed for decades for
signalized road networks. Although the solution of this problem is relatively easy for an isolated networks, it is
very difficult issue for the Coordinated Signalized Networks (CSN) due to its components, namely “offset” and
“common cycle time”. For the CSN, TRANSYT is firstly proposed by Robertson (1969) and it is one of the most
useful program in which a Performance Index (PI) is computed for a given signal timing and staging plan. It also
allows to optimize signal timings for coordinated networks. Pl can be presented in a different forms but its
general form used in TRANSYT is the sum of a weighted linear combination of estimated delay and number of
stops.

In the literature, different methods have been developed for solving signal timing optimization problem. Wong
(1995) proposed some mathematical expressions for the derivatives of Pl with respect to control variables.
Results showed that the proposed expressions are needed less computational effort in comparison to numerical
differentiation. One year later from this study, Wong (1996) enhanced an approach using group-based control
variables in the context of Area Traffic Control (ATC) without considering traffic assignment procedure. About
10% improvements has been performed in comparison to the stage-based method used in TRANSYT. However,
to overcome some disadvantages of this method by means of computational effort, parallel computing technique
has been proposed by Wong (1997). Heydecker (1996) developed a decomposition approach to solve signal
timings optimization problem without considering coordination between intersections. Afterwards, Wong et al.
(2002) proposed a time-dependent TRANSYT model for improving the performance index. Girianna and
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Benekohal (2002) presented two different Genetic Algorithm (GA) techniques for oversaturated signalized
networks. On the other hand, as a pioneer study, Ceylan (2006) combined GA and Hill Climbing (HC) methods,
and proposed an approach to decrease the search space through subsequent solution steps to solve the ATC
problem. Another study related to meta-heuristic methods proposed by Chen and Xu (2006) aimed to solve
traffic signal timings optimization problem by using Particle Swarm Optimization (PSO) algorithm. Chiou
(2007a) presented a hybrid algorithm for the ATC problem by considering multi-objectives. Similarly, Chiou
(2007b) presented an algorithm based on Quasi-Newton method to solve the ATC problem. Dan and Xiachong
(2008) developed an improved GA to determine optimal solution for the ATC problem for coordinated
signalized networks. Zhang et al. (2009) presented a real-time signal control method based on discrete
differential evolution algorithm by considering multi-objectives. Li (2011) presented a model to solve signal
optimization problem for an arterial for oversaturated road networks considering queues between intersections.
Liu and Chang (2011) further developed an arterial signal optimization model which considers queues on links
and their interactions between lane groups.

He et al. (2012) developed a mathematical model to perform arterial traffic signal control, aiming to provide
dynamical progression based on the probe information. Jones et al. (2013) drew the attention interdependency of
signal controls and traffic flows in determining robust signal timings. On the other hand, Hu and Liu (2013)
developed an arterial signal optimization model by considering vehicle-actuated signal coordination. Similarly,
Maher et al. (2013) dealt with optimizing signal timings for the ATC by using cross-entropy method. Zhang et
al. (2013) determined signal timings by introducing a bi-objective optimization model for coordinated signalized
networks by considering environmental issues. Dell’Orco et al. (2013) and (2014) presented Harmony Search
and Atrtificial Bee Colony algorithms for coordinated signalized networks, respectively. In the first study, they
took the users’ reactions for each candidate signal timing plan into account by solving stochastic traffic
assignment whereas fixed set of link flows were considered in the second study. Bi et al. (2014) used fuzzy logic
to solve traffic signal control problem for road networks. Cesme and Furth (2014) suggested an approach for
traffic signal control called self-organizing signals based on actuated control. He et al. (2014) addressed in their
study the conflicting issues between actuated-coordination and multimodal priority control. Ozan et al. (2015)
combined Reinforcement Learning (RL) algorithm with TRANSYT-7F to optimize signal timings in CSN and to
minimize the PI. Baskan and Ozan (2015) proposed a heuristic solution algorithm based on classical Differential
Evolution (DE) for solving signalized road network design problem with link capacity expansions using bi-level
programming. Gangi et al. (2016) suggested two steps approach for signal traffic control where the first step
refers to each single junction optimization, the second to network coordination. Zhang et al. (2016) attempted to
synchronize signalized long arterials and grid networks along the line of bandwidth maximization. Li et al.
(2016) proposed a set of algorithms to design signal timing plans via deep RL. Dogan and Akgungor (2016)
developed a fuzzy logic based method in order to optimize signal timings at an isolated four-leg intersection.
Recently, continuous RL algorithms were applied to optimize traffic signal controllers in a traffic network by
Aslani et al. (2017). Yu et al. (2017) proposed a convex programming approach to optimize signal timings for
both vehicular and pedestrian traffic at an isolated intersection. Jovanovic™ et al. (2017) developed a new method
based on Bee Colony Optimization (BCO) technique for optimizing traffic signal timings at the area-wide urban
traffic control system.

The literature reveals that researchers preferred the use of meta-heuristic methods rather than using exact
methods to solve different types of signal optimization problems by means of aiming different objectives.
Additionally, although the heuristics methods existed are able to achieve good results in optimizing signal
timings, their improved versions need to be investigated to provide better results. In this study, Improved
Differential Evolution (IDE) algorithm is compared with the classical DE in optimizing traffic signal timings
with fixed link flows in a coordinated signalized network. The remaining content of this paper is organized as
follows. Problem formulation is provided in Section 2. The solution algorithm which contains classical DE and
IDE methods is given in Section 3. Numerical applications are presented in Section 4. Conclusions and future
directions are given in the last section.

2 Problem Formulation

As mentioned above, we aim to optimize traffic signal timings in coordinated signalized networks without
solving traffic assignment problem. This means that we used fixed set of link flows for each candidate signal
timing plan to determine the PI given in Eq. (1) by considering its constraints presented in Eq. (2). Our aim is to
minimize the PI, which is generally expressed as the sum of delay and number of stops in a road network in
TRANSYT-7F. In this study, we have used total operating cost as a measure of the effectiveness which is one of
the several objective functions provided in TRANSYT-7F.
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where da is delay on link a, ae L, Wg is link-specific factor for delay d on link a, K is stop penalty factor, S is

stops on link a per second, wj is link-specific factor for stop S on link a, q is a vector of fixed set of link flows,
v is a vector of signal setting parameters, c is network cycle time (sec), 8 is offset time (sec), ¢ is stage green
time (sec), Qyq is feasible region for signal timings, | is intergreen time (sec), and z is number of stages at each
signalized intersection in a given road network. Additionally, the relation given Eq. (3) is used in order to
provide the green timings constraints (Ceylan and Bell, 2004). The advantage of this relation is that it ensures the
sum of the green times of each stage will be equal to the network cycle time.
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where ¢; is the green time (sec) for stage i, and @,;,; the minimum green time for stage i.

3 Solution Algorithm

The DE algorithm is proposed as a strong and easy applicable algorithm by Storn and Price (1995). It guides the
initial solution vectors towards to vicinity of the global or near-global optimum solution by means of a repeated
cycle of mutation, crossover, and selection (Liu et al., 2010). The DE takes the advantage of two parameters in
the solution process apart from the number of populations (NP). One of them is the mutation factor (F), which is
used to obtain mutant vector from selected three solution vectors in the population and recommended to set
between 0.5-1 by Storn and Price (1995). The second one is the crossover rate (CR) which represents the
probability of consideration of the mutant vector. The recommended range of CR by Storn and Price (1995) is
[0.8, 1]. The steps of the classical DE can be summarized within the context of signal timings in order to provide
the brevity of the paper.

Initialization: At generation t, the initial population (') is randomly created with signal timings providing
lower and upper bounds shown in Eq. (4). Taking the created decision variables with the fixed link flows into

account for each solution vector (i.e. target vector) in the population, the objective function values ( PI'") are
calculated using TRANSYT-7F traffic model as given in Eq. (1).
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where je{12,..,NP}, i{12,...,n}and nis the number of decision variables.
Mutation: This process is done by adding the weighted difference vector between two solution vectors to a third

vector in the population. Mutant vector, m', is determined as given in Eq. (5).
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where ", y2tand 2 are selected vectors in the population, and y* =y =y .
Crossover: In order to create trial vector by combining the mutant and target vectors, the crossover mechanism is

utilized. The vector created by using crossover operator is called trial vector (r') and it can be determined as
given in Eq. (6).

i .
otherwise

Lt mlt, if rand (0,1) < CR Ori=iygng (6)
l//ij t!

The crossover rate, CR, is compared with the randomly generated value between 0-1. If CR is greater, the trial

vector is created from the mutant vector otherwise from the target vector. In addition, the statement, i=i_,,

where i, is the randomly selected integer number in the range [1, n], ensures that at least one member of the

trial vector is taken from the mutant vector to make the trial vector different from the target vector at each
generation.

Selection: After executing this step, each generation is completed. Firstly, the objective function value of each
trial vector is calculated by using Eq. (1). After then the trial vector is compared with the target vector according
to their objective function values and the best one gains to enter to the next generation as shown in Eq. (7).

Yt = rt, if PL(Irt) < Pl(y') @)
v, otherwise

3.1 Improved Differential Evolution (IDE) Algorithm

In spite of the fact that the classical DE algorithm is recognized as one of the powerful meta-heuristic algorithms,
probably better solutions in optimizing traffic signal timings can be attained by improving it in different ways.
Baskan and Ceylan (2014) developed a DE based algorithm with local search and mutation operators in order to
solve continuous network design problem. Taking the solid performance of this method into account, we aimed
to investigate its performance in optimizing traffic signal timings in coordinated signalized networks. For this
purpose, we combined the Improved Differential Evolution (IDE) algorithm and TRANSYT-7F traffic model.
The IDE algorithm has two improvements in respect to classical DE as given below:

Improvement 1: More than one mutation strategies are simultaneously taken into account by means of a
parameter called Mutation Strategy Selection Rate (MSSR). If the MSSR is greater than the random number
generated between 0-1, the classical mutation strategy is used as shown in Eq. (8). Otherwise, the second
mutation strategy, in which the best solution vector found in the previous generation is considered, is used to
obtain a mutant vector.

1t 2.t 3t i
it _ Vi +Ft -y, if rand (0,1) < MSSR ®)

b w4 F(p Pttt 2ty otherwise

The proposed mutation strategy brings two novelties: (i) the MSSR allows of using two different strategies
simultaneously, (ii) it considers the best solution vector at each generation with the probability of (1-MSSR).
Thus, the proposed algorithm may have the potential to achieve faster to global or near global optimum solution
of a given optimization problem. The value of the MSSR is taken between 0.9 and 1 according to the Baskan and
Ceylan (2014).

Improvement 2: The second improvement strategy is the addition of a local search to the end of the each
generation. In this process, dx' is generated from the range of (y{,y; ) as shown in Eq. (9). This range is

selected according to the upper and lower bounds of the signal timings constraints given in Eq. (2). Following
this, it is added to the vector of best solution and then the candidate vector (cv) is created as can be seen in Eq.
(10). If the candidate vector’s fitness function value is better than that of the best solution, it is replaced with the
best solution in the population. Otherwise, dx! vector is subtracted from the vector of the best solution in order to
search possible better solutions in other direction. Once the local search is ended, the vector of dx! is multiplied
with a number of 0.9 to reduce the search space around the best solution step by step as given in Eq. (11). The
flowchart of the developed meta-heuristic solution algorithm is given in Fig. 1.
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Figure 1. The flowchart of the developed meta-heuristic solution algorithm

4 Numerical Application

In this section, Differential Evolution TRANSYT-7F (DETRANS) and Improved Differential Evolution
TRANSYT-7F (IDETRANS) models are compared. These models include two parts: (i) meta-heuristic
algorithm: DE and IDE algorithms; (ii) TRANSYT-7F traffic model. The meta-heuristic algorithm optimizes
traffic signal timings while TRANSYT-7F is used to determine network Pl for a given signal timing plan. The
performance comparison of DETRANS and IDETRANS has been conducted by solving a two-junction network
(Ceylan, 2002). The basic layout of the two-junction network and stage plans are given in Figs. 2 and 3. This
network includes 8 links and 7 signal setting variables at two signal-controlled junctions. Saturation flow and
free-flow travel time of all links are 1800 veh/h and 20 sec, respectively. The fixed set of link flows is given in

Table 1.

Table 1. Fixed set of link flows (Ceylan, 2002)

Link flows in veh/h

Q1

Qs (o

Qs O6

615.00 45.00 225.00 615.00 225.00 45.00
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Figure 2. Two-junction network (Ceylan, 2002)  Figure 3. Representation of signal stages (Ceylan, 2002)

The constraints for signal timing variables are set: 36<c<120;0<60<C; ¢ ,=7;l;.,=1,,=5. The

developed models are executed with the following DE parameters: crossover rate (CR) is 0.8, mutation factor (F)
is 0.8, population size (NP) is 15, and maximum generation number (tmax) is 150. The total computation times for
the number of maximum generations in DETRANS and IDETRANS models took about 43 and 53 minutes,
respectively. Convergence graphs of both models are given in Figure 4. They show totally different trends even
though both models are initiated at the same initial Pl value as 20.07. While the Pl was found as 18.01 at the
115" generation in the DETRANS model, it was determined as 16.40 at the 15" generation in IDETRANS. In
other words, the improvement rates for DETRANS and IDETRANS models are about 11% and 22% according
to the initial Pl value, respectively. Although the computation time of the IDETRANS model considering
maximum number of generation was a bit more than that of the DETRANS, it reaches to its best Pl value only
after 15" generation. This result shows that the IDETRANS outperforms the DETRANS in terms of both
objective function value and computational effort. Additionally, the common cycle times are obtained as 61 and
69 seconds for both models as can be seen in Table 2.

Table 2. The results for fixed set of link flows

Performance  Cycle : Duration of stages (sec) £
Model Index Time Jnltrlgggr Stage 1 Stage 2 0o set@s (sec)
(P1) c () 0, 0,
DETRANS 18.01 61 ; 1(1) g(l) F?l
IDETRANS 16.40 69 ; gg i% 303
21
20 DETRANS
= \ 1.1 )
< \ \ IDETRANS
€ 19 \
£ 18 \
£ \
& 17 \IEESCE :
Ve el d L2
16
- o

1
100

Number of generations

Figure 4. The convergence of DETRANS and IDETRANS for the two-junction network
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5 Conclusions

This study deals with optimizing traffic signal timings in coordinated signalized networks. For this purpose,
IDETRANS model is developed by means of combining IDE algorithm and TRANSYT-7F traffic model. In
order to compare the performance of IDETRANS and DETRANS models, they are applied on a small road
network. IDETRANS model is able to improve PI about 22% according to its initial value while the DETRANS
improves only about 11%. As a result, IDETRANS may be alternative for optimizing traffic signal timings in
coordinated signalized networks. Further study should be on testing IDETRANS on real city networks.
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