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Ozet

Pekistirmeli Ogrenme (PO), temel olarak belirli
bir amaca erigsmek icin cevre ile etkilesim
sonucunda ogrenme anlamina gelmektedir. PO,
simiilasyon bazli dinamik programlamanin bir
sekli olup ilk olarak Markov karar siireglerinin
¢coziimii amaciyla kullamilmistir. Bu ¢alismada
temel PO algoritmalarindan olan Q-6grenme
algoritmasi modifiye edilmis ve test fonksiyonlart
tizerinde performansi arastirilmigtir. Sonuglar
literatiirde mevcut olan diger metotlar ile
karsilastirimis ve modifiye PO algoritmasinin
fonksiyon  minimizasyonunda olduk¢a bagarili
oldugu goriilmiistiir.

1. Giris

Pekistirmeli Ogrenme (PO) herhangi  bir
Ogretici kaynaginin bulunmasint gerektirmeyen
buna karsilik sistemin c¢evre ile etkilesimini
kullanan bir 6grenme yontemidir [1]. PO
metodunda Ogrenen ve Ogrenme siireci olmak
iizere iki kavram sz konusudur. Her bir
O6grenme evresinde 6grenen mevcut durumunu
degerlendirerek bir olay seger ve ortamdan aldigi
geri beslemeyi sisteme uygular. Ogrenenin amaci
herhangi bir durumda en uygun davranisi
gosterebilmektir. PO yontemi son zamanlarda
literatiirde  farkli alanlardaki  optimizasyon
problemlerinin ¢dziimiinde kullanilmasina ve
basarili sonuglar alinmasina ragmen fonksiyon
minimizasyonu konusunda uygulamasi
bulunmamaktadir [2-5].

Herhangi bir F(x) fonksiyonu goéz Oniine
alindiginda biitiin x degerleri igin eger F(xyn) <
F(x) ise xn, noktast fonksiyonun minimum
noktast olarak tanimlanmaktadir. Fonksiyon
birgok yerel minimuma sahip olabilecegi gibi
global minimum noktasi bunlardan bir tanesidir.
Global minimumun bulunmasinda stokastik
metotlarin bircok avantaji vardir.  Konveks
olmayan yapidaki  fonksiyonlarin  global
minimum  noktalarinin  bulunabilmesi  igin
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simdiye  kadar  bircok  sezgisel  metot
gelistirilmistir [6-9]. Ancak  problemin
karmagikligindan dolay1 global ve yakin global
optimum degerlerin bulunabilmesi amaciyla
farkli  metotlarin  performanslarinin  test
edilmesinin  gerekliligi acgiktir. Bu nedenle
calismada modifiye edilmis PO yoénteminin test
fonksiyonlari tizerinde performansi
arastirilmistir.

2. Pekistirmeli Ogrenme

PO yaklagimlarinin ~ temel felsefesi
gegeklesen bir olgunun odiillendirilmesi veya
cezalandirilmasin1i bir  mantik  igerisinde
diizenleyerek istenen bir sonucun ortaya
cikmasini saglamaktir. PO’de karar verici ajan
olarak adlandirilmakta ve c¢evresi ile etkilesim
icinde olmaktadir. Bu etkilesim, ajana cevre
iginde uygulayacagi eylemi se¢cmesini
saglamaktadir.

PO yontemleri, Dinamik Programlama,
Monte Carlo ve Gegici Fark Ogrenme metotlart
olmak {izere ii¢ ana kategoriden olusmaktadir.
Her kategorinin kendine gore avantaj ve
dezavantajlart  bulunmaktadir. Gegici  fark
O0grenme metotlarindan biri olan Q-6grenme
algoritmasi, PO yontemleri icinde modele ihtiyag
duymayan bir yaklasim olup bu algoritmada
cevrenin nasil calistigi hakkinda ajana herhangi
bir bilgi verilmemektedir. Bunun yerine ajan
eylemleri deneyerek en iyi 0diilii veren eylemi
se¢gmektedir. (Q-0grenme algoritmasi, durum-
eylem g¢iftinin sahip oldugu degerlerin tahmin
edilmesine bagli olarak caligmaktadir. QO
degerleri olarak adlandirilan bu degerler verilen
bir durum-eylem ¢ifti igin sayisal tahminler
olarak nitelendirilmistir [10]. Algoritmada, QO
tablosu olarak adlandirilan tablonun elemanlar1
her durum degisiminde giincellenmektedir [1].
Bu tabloda her bir s durumu ve a eylemi ¢ifti i¢in
O(s,a) olarak nitelendirilen (0] degeri

bulunmaktadir. Ajan, ¢evrenin s, durumundan

s,,; durumuna gecisinde yapilan eylemin (a,)
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ardindan 7, olarak gosterilen 6diilii almaktadir.
O degerleri Denklem (1) ile tantmlanmaktadir.

O(s,a)=r(s,a)+yxQ'(s',a") @)
Burada; O(s,a), (s,a)durum eylem ¢ifti i¢in O
degeridir. Q(s',a’), s durumunda a eyleminin
tamamlanmasmnin ardindan gelen s durumunda

secilen a eylemi ile elde edilebilen en iyi Q
degeridir. r(s,a), s durumunda a eylemi

tamamlandiginda almman o6diil degeri olup ¥

gelecekteki oOdiillere atanan agirligl temsil eden
azaltma faktoridir [11].

Ogrenme  siireci, belirli sayidaki &grenme
evresinden meydana gelmektedir. Her 6grenme
evresi rastgele bir s durumunda baglamaktadir.
Sonrasinda ajan bir a eylemi segerek odiiliini
almakta ve yeni durumu gézlemlemektedir. Buna
bagli olarak, ajan Q degerlerini durum-eylem
ciftine gore Denklem (2)’de verilen bagintiyi
kullanarak giincellemektedir.

O (s,a)=(-a)xQ,_(s,a) +

2
ax[r(s,a)-t—;/xme}x Qt_l(s’,a’)} @

Burada, Q,(s,a) gilincellenmis @ degeri,
O,_(s,a) Q tablosunda énceden kaydedilmis Q
degeri ve « algoritmanin 6grenme orani olup
onceden kaydedilen @,  (s,a) degeri ile
kargilagtirmak i¢in yeni hesaplanan O degerine
atanan agirligi tammmlamaktadir [11].

PO ile diger sezgisel metotlarin birlestirilmesi
ile elde edilen algoritmalar farkli alanlardaki
optimizasyon problemlerinin ¢6ziimiinde son
yillarda etkin olarak kullamlmaktadir. PO
optimizasyon problemlerine uygulanabilmesine
ragmen, matematiksel fonksiyonlarin global
minimum degerlerinin elde edilmesi amaciyla
literatiirde  kullamilmamigtir.  Bu  amagla
calismada MOdifiye Pekistirmeli Ogrenme
(MOPO) algoritmas gelistirilmistir. Q-dgrenme
algoritmasi tabanli MOPO algoritmasinda her
O0grenme evresinde onceki evredeki en iyi ¢oziim
bilgisinin yardimiyla orijinal ¢gevre boyutunda bir
alt ¢evre olusturulmaktadir.

Sekil 1’den goriildiigii gibi, onceki 6grenme
evresinden elde edilen en iyi O(s,a) degeri,
yerel optimuma takilmay: dnlemek i¢in g¢evrenin
(m+1)’inci satirinda saklanmaktadir. Ayrica alt
gevre, orijinal c¢evre boyutunda (m+2)’nci
satirdan (2m+1)’nci satira kadar 6nceki 6grenme
evresinde elde edilen en iyi deger ve B vektorii

kullanilarak Denklem 3) yardimiyla
olusturulmaktadir. Boylelikle, global optimum,
algoritma siireci boyunca B degeri ile
siirlandirilan alt cevre yardimiylada
aranmaktadir. B; vektor ve j=1,2,..,n kadar olup,
n karar degiskenlerinin sayisidir. B degerinin

araligt  verilen  probleme  baghi  olarak
secilebilmektedir [6].
rasigele(Q'(s.a) =B ; O/ (s.a) +B)  (3)

MOPO algoritmasinda, alt ¢evre olusturulduktan
sonra orijinal ¢evre ve alt ¢evre iyiden kotiiye
dogru siralanmaktadir. Bu sayede, bir &nceki
o6grenme evresinden elde edilen en iyi ¢6ziim ve
alt ¢evre, orijinal g¢evre ile karsilagtirllmaktadir.
Yeni ¢oziimlerden biri daha iyi amag fonksiyonu
degeri sagliyorsa, yeni deger orijinal gevrenin

icine dahil edilirken koti deger c¢evreden
¢ikarilmaktadir.
Orijinal cevre
t --------------------------------------- al
Q150 Qr (505 ) o Qn(Sear) JACIOED)

D1 (512 @) - D (52 Jomere e SOMCN:Y) (0 6na)

B (5:2)

Q(E:Efﬂ(sx—l» ;1) »Q{;ﬂp@x-l:ﬂx-l)»-- --»Qf;i{)n(sz-rﬂx-l)

Ot (8:4,) Dy (5,4,

_Q(zm+1)1(~‘rﬂ:)»Q(;»m)z [

Om+21 (568 ) s Q)2 (S 45 Ao :Qm+2)n(S2: ;)

-----:Q[2m+1)u(51:[1{)_

\ Alt cevre

Sekil 1. Orijinal-alt ¢evre iliskisi.

Burada, m c¢evrenin boyutunu, n karar
degiskenlerinin sayisinit ve ¢ 6grenme evresinin
sayisint ifade etmektedir. Algoritmanin ¢ézim
adimlart Sekil 2’de gosterilmektedir.

Baglangi¢ t=0. f, a, y ayarla
While t <= tyay (tmax=maksimum ogrenme evresi sayisi)
Ift=0, baslangi¢c (s, a) degerlerini olustur
Amag fonksiyonunun degerlerini hesapla
Else
Eniyi 9b%'(s,a) sakla

r—

B, =B 0.99

Alt ¢evreyi Denklem (3) ile olustur
Amag fonksiyonunun degerlerini hesapla
Cevre ve alt ¢evreyi iyiden kétiiye dogru sirala

end if

En iyi QP*'(s,a) bul

7,(s,a) degerini Denklem (4) ile hesapla

O, (s, a) degerlerini Denklem (2) ile giincelle

t=t+1
End while _
Sekil 2. MOPO algoritma adimlari.

7;f[lm+ 1(Qamen (e H’)),



f(x)
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MOPO

belirtilen 6diil degeri, s durumunda yapilan a
eyleminin amag¢ fonksiyonunu nasil etkiledigini
belirlemektedir. Gelistirilen 6diil fonksiyonu
Denklem (4)’de verilmektedir.

algoritmasinda 7,(s,a) olarak

lim ( tbeSt(Soa)_Qt(sna)

=0
9,(s,a) )

“)

r,(s,a)—>0

Burada, 7,(s,a)ddiil fonksiyonu, Q,(s,a) QO

degeri ve Q'*'(s,a) t'nci Sgrenme evresinde

elde edilen en iyi Q degeridir. MOPO
algoritmasinda 6diil fonksiyonu, en iyi QO degeri
ile 6grenme evresindeki Q degeri arasindaki
farkin (0] degerine bolimii olarak
belirlenmektedir. Odiil degerleri, fonksiyonunun
yapisindan dolayr “0” degerine yaklagmaktadir.
Diger bir deyisle MOPO algoritmasinda toplam
odiill degerinin, verilen bir fonksiyonun global
yada yakin global degerinin bulunabilmesi igin
minimize edilmesi gerekmektedir.

3. Test Fonksiyonlari

MOPO algoritmasi MATLAB R2009a
yazilimi kullanilarak kodlanmig ve Intel Core2
CPU 2.00 GHz, RAM 2 GB bilgisayarda
calistirlmistir. MOPO algoritmasinda m cevre
boyutu 20, y azaltma faktorii 0.2 ve o Ogrenme
orant 0.8 olarak alinmustir. B vektorii verilen
problemin maksimum ve minimum sinirlarinin
mutlak deger olarak toplami olarak belirlenmistir

[6].

[Ik olarak MOPO ve PO (Q-6grenme)

algoritmalarinin performanslart f(x,, x,) = %
1+|x,

fonksiyonu ile karsilastirilmistir. Fonksiyonun
global minimum degeri (-10,0)
araliginda f(x;,x,)=-10 olmaktadir. MOPO ve

PO algoritmalarinin yakinsama davranislar1 Sekil
3’de goriilebilmektedir.

J—eY

MOPO

S

1 10 100 1000

Ogrenme evresi sa

Sekil 3. PO ve MOPO Kkarsilastiriimast.

10000

Sekilden goriildiigii  gibi MOPO 1176
O6grenme evresinde global minimum degere
ulasirken PO algoritmasi bu degere ulasmak icin
7337 6grenme evresine ihtiya¢c duymaktadir.

MOPO algoritmasinin performansi ayrica 10
farkl1 test fonksiyonu {iizerinde Tablo 1°de
verilen algoritmalar ile  karsilastirilmistir.
Sonuglar; en iyi fonksiyon degeri, fonksiyon
¢Ozlim sayis1 ve ortalama hata olarak Tablo 2’de
verilmistir. En iyi fonksiyon degeri, kabul edilen
hassasiyet degeri goz Oniine alinarak global
¢oziime en yakin deger olarak
degerlendirilmistir. Hassasiyet degeri, bulunan
en iyi fonksiyon degeri ile teorik global deger
arasindaki  farkin mutlak  degeri  olarak
belirlenmistir. Tiim test fonksiyonlar1 i¢in bu
deger “0” olarak segilmistir. MOPO algoritmasi
verilen hassasiyet degeri saglanana kadar
calistirllmistir. Fonksiyon ¢oziim sayist en iyi
fonksiyon degerinin elde edildigi ¢dziim sayisi
olarak ifade edilmistir. Her bir ¢oziimde elde
edilen en iyi fonksiyon degeri ile teorik global
optimum deger arasindaki farklarin ortalamasi
ise “ortalama hata” olarak degerlendirilmistir. Bu
deger her bir farkli denemede algoritmanin
coziim kararliligini temsil etmesi agisindan
oldukc¢a 6nemli bir parametredir.

Tablo 1. Fonksiyonlar ve karsilagtirilan

algoritmalar.
Fonksiyon Kaynak
F3 [12]
F3-F7 [7]
F1-F6-F7-F9-F10 [9]
F1 [13]
F4 [14]
F8 [15]
F1-F2-F3-F5-F6-F7 [16]
F3-F5 [8]
MOPO algoritmasinin performansinin
degerlendirilmesinde kullanilan fonksiyonlar ve
Ozellikleri asagida siralanmigtir. F7 ve F9

fonksiyonlar1 sirasiyla 6 ve 8 degiskenlidir. F1
fonksiyonu 3 degiskenli olup diger fonksiyonlar
iki degiskenlidir.

F1:
De Jong (3 degisken)

f)=3

Cozlim araligi: —5.12<x, <5.12;i=1,2,....pn
Global minimum: x=(0,0,0), f(x)=0
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F2:
Easom (2 degisken)
[ (x1%2) = —c08(x;) c0s(x, ) exp(—(x; = ) = (x, = 7))
Coziim aralig: —100 < x;,x, <100
Global minimum: (x;,x,) = (z,7) , f(x,x,)=—1

F3:
Goldstein-Price (2 degisken)

f(x,y)= [1+(x1 + x5 4»1)2(19714xl +3x12 —14x, + 6x,x, +3x22]

*[(30 + (2x; —3x,)?18 —32x; +12x7 + 48x, —36x,x, + 27x22]

Cozlim araligi: 2 < x,x, <2
Global minimum: (x;,x,)=(0,—1), f(x,x,)=3

F4:
Drop wave (2 degisken)

1+ cos(12y/x7 +x3)
1

E(xf+x§)+2

f(x,x,) ==

Coziim araligi: =5.12<x,x, <5.12
Global minimum: (x;,x,)=(0,0), f(x;,x;)=-1

F5:
Shubert (2 degisken)

f(x,x,)= ii.cos((i +Dx, +1) *ii.cos((i +Dx, +1)

Coziim araligi: —10 < x;,x, <10
760 adet yerel minimum noktasi
18 adet global minimum: f(x;,x,) =-186.7309

Fo6:
Zakharov (2 degisken)

f(x)= ixf +(Zn:0.5ix[)2 +(Zn:0.5ixi)4
i=1 i=1 i=1

Cozlim araligi: —5<x; <10,i=12,....p
Global minimum: x=(0,0), f(x)=0

F7:
Hartman (6 degisken)
4

r0=-3¢ exp{—zav(xj —Pv)2|
=1

i=1
Coziim araligi: 0< x; < 1,j=12,..6

Global minimum:
x =(0.201,0.150,0.477,0.275,0.311,0.657)

f(x)=-3.32

a ve pdegerleri [9]’dan alinabilir.

F8:
Rastrigin (2 degisken)

=100+ Y[ ~10cos2)|

i=1
Coziim aralig: —5.12<x; <5.12,i=12,...n
Global minimum: (x;,x,)=(0,0), f(x)=0

F9:
Griewank (8 degisken)

n

= N2274000- T Teos(Zi) 1
)= % l;[cos( N

i=1
Coziim araligl: —300<x; <600,i=12,...n
Global minimum: x=(0,......0), f(x)=0

F10:
Branin (2 degisken)

1 1
f(x)=(x, —5—2x12 +ix1 —6)* +10(1——)cos(x;) +10
4r T 87

Coziim araligi: —5<x; <£10,0<x, <15

Global minimum noktalari:

(~7,12.275),(%,2.275),(37,2.475)  f(x)= 4i
T

Tablo 2°de MOPO algoritmasmin 100 defa
calistirllmast neticesinde elde edilen degerler
verilmistir. MOPO tiim test fonksiyonlar1 icin
literatiirde verilen global minimum degerleri
bulabilmektedir. Ortalama hata degerlerine
bakildigi zaman, MOPO algoritmas: ile F7
fonksiyonu hari¢ tim fonksiyonlarda her
¢oziimde global minimum degerlerin elde
edilebildigi goriilmektedir. Bunun yaninda F7
fonksiyonu i¢in elde edilen ortalama hata degeri
de karsilagtirilan diger algoritmalara gore daha
distiktiir.  Fonksiyon  ¢6ziim  sayilarinin
karsilastirilmas:  durumunda MOPO’niin  diger
algoritmalara gore daha fazla ¢oziim sayisinda
sonuca ulastig1 goriilmektedir. Bunun nedeni tiim
test fonksiyonlar1 i¢in MOPO algoritmasinda
hassasiyet degerinin “0” olarak secilmesidir.
Diger bir deyisle MOPO teorik global minimum
deger elde edilinceye kadar c¢alistirilmistir. Elde
edilen sonuglara gdre gelistiilen MOPO
algoritmasinin ~ fonksiyon  optimizasyonunda
oldukea basarili oldugu goriilmektedir.
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Tablo 2. MOPO ve karsilastirilan
algoritmalarin sonuglari

En iyi Fonksiyon
. . fonksiyon resLy Ortalama
Fonksiyon Algoritma 7. ¢Ozlim
degeri hata
sayist
F1 [13] - - 3e-08
[9] - - 7.69¢-29
[16] - - 0.00004
MOPO 0 36955 0
F2 [16] - - 0.00009
MOPO - 40680 0
F3 [12] 3 9000 -
(7] - - -
[8] 3 2573 -
[16] - - 0.00012
MOPO 3 33920 0
F4 [14] -9.99¢-01 16801 -
MOPO -1 35640 0
F5 [8] 186.7309 2568 -
[16] - - 0.00007
MOPO 186.7309° 16740 0
F6 [9] - - 5.71e-27
[16] - - 0.00005
MOPO 0 37016 0
F7 [9] - - 4.47e-11
[16] - - 0.00024
m - - -
MOPO -3.32° 30400 2.34e-16
F8 [15] - - 0°
MOPO 0 33500 0
F9 [9] - - 6.23e-22
MOPO 0 37010 0
F10 [9] - - 2.61e-13
MOPO 0.3979° 7680 0

*Teorik global optimum deger 4 ondalikli olarak almmustir.
® Teorik global optimum deger 2 ondalikli olarak alinmustir.
°Algoritma 30 defa ¢aligtirilmigtir.

4. Sonuclar

Calismada PO ydnteminin modifiye edilmesi
ile MOPO yéntemi gelistirilmistir. MOPO ve PO
algoritmalan karsilastirilnus ve MOPO’niin ¢ok
daha az sayida Ogrenme evresi ile verilen
fonksiyon icin teorik global minimum degeri
bulabildigi gosterilmistir. 10 adet test fonksiyonu

tizerinde MOPO ile elde edilen sonuglar
literatiirdeki mevcut yontemlerle
karsilastirilmistir. Elde edilen  sonuglar

gelistirilen MOPO algoritmasinin ¢ok degiskenli
fonksiyonlar dahil olmak iizere fonksiyon
minimizasyonunda oldukc¢a basarili oldugunu
gostermektedir.
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