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Özet 

Pekiştirmeli Öğrenme (PÖ), temel olarak belirli 
bir amaca erişmek için çevre ile etkileşim 
sonucunda öğrenme anlamına gelmektedir. PÖ, 
simülasyon bazlı dinamik programlamanın bir 
şekli olup ilk olarak Markov karar süreçlerinin 
çözümü amacıyla kullanılmıştır. Bu çalışmada 
temel PÖ algoritmalarından olan Q-öğrenme 
algoritması modifiye edilmiş ve test fonksiyonları 
üzerinde performansı araştırılmıştır. Sonuçlar 
literatürde mevcut olan diğer metotlar ile 
karşılaştırılmış ve modifiye PÖ algoritmasının 
fonksiyon  minimizasyonunda oldukça başarılı 
olduğu görülmüştür. 

1. Giriş 

Pekiştirmeli Öğrenme (PÖ) herhangi  bir 
öğretici kaynağının bulunmasını gerektirmeyen 
buna karşılık sistemin çevre ile etkileşimini 
kullanan bir öğrenme yöntemidir [1]. PÖ 
metodunda öğrenen ve öğrenme süreci olmak 
üzere iki kavram söz konusudur. Her bir 
öğrenme evresinde öğrenen mevcut durumunu 
değerlendirerek bir olay seçer ve ortamdan aldığı 
geri beslemeyi sisteme uygular. Öğrenenin amacı 
herhangi bir durumda en uygun davranışı 
gösterebilmektir. PÖ yöntemi son zamanlarda 
literatürde farklı alanlardaki optimizasyon 
problemlerinin çözümünde kullanılmasına ve 
başarılı sonuçlar alınmasına rağmen fonksiyon 
minimizasyonu konusunda uygulaması 
bulunmamaktadır [2-5].  

 
 Herhangi  bir F(x) fonksiyonu göz önüne 

alındığında bütün x değerleri için eğer F(xmin) ≤ 
F(x) ise xmin noktası fonksiyonun minimum 
noktası olarak tanımlanmaktadır. Fonksiyon 
birçok yerel minimuma sahip olabileceği gibi 
global minimum noktası bunlardan bir tanesidir. 
Global minimumun bulunmasında stokastik 
metotların birçok avantajı vardır.  Konveks 
olmayan yapıdaki fonksiyonların global 
minimum noktalarının bulunabilmesi için 

şimdiye kadar birçok sezgisel metot 
geliştirilmiştir [6-9]. Ancak problemin 
karmaşıklığından dolayı global ve yakın global 
optimum değerlerin bulunabilmesi amacıyla 
farklı metotların performanslarının test 
edilmesinin gerekliliği açıktır. Bu nedenle 
çalışmada modifiye edilmiş PÖ yönteminin test 
fonksiyonları üzerinde performansı 
araştırılmıştır. 

2. Pekiştirmeli Öğrenme 

PÖ yaklaşımlarının temel felsefesi 
geçekleşen bir olgunun ödüllendirilmesi veya 
cezalandırılmasını bir mantık içerisinde 
düzenleyerek istenen bir sonucun ortaya 
çıkmasını sağlamaktır. PÖ’de karar verici ajan 
olarak adlandırılmakta ve çevresi ile etkileşim 
içinde olmaktadır. Bu etkileşim, ajana çevre 
içinde uygulayacağı eylemi seçmesini 
sağlamaktadır.  
 

PÖ yöntemleri, Dinamik Programlama, 
Monte Carlo ve Geçici Fark Öğrenme metotları 
olmak üzere üç ana kategoriden oluşmaktadır. 
Her kategorinin kendine göre avantaj ve 
dezavantajları bulunmaktadır. Geçici fark 
öğrenme metotlarından biri olan Q-öğrenme 
algoritması, PÖ yöntemleri içinde modele ihtiyaç 
duymayan bir yaklaşım olup bu algoritmada 
çevrenin nasıl çalıştığı hakkında ajana herhangi 
bir bilgi verilmemektedir. Bunun yerine ajan 
eylemleri deneyerek en iyi ödülü veren eylemi 
seçmektedir. Q-öğrenme algoritması, durum-
eylem çiftinin sahip olduğu değerlerin tahmin 
edilmesine bağlı olarak  çalışmaktadır. Q 
değerleri olarak adlandırılan bu değerler verilen 
bir durum-eylem çifti için sayısal tahminler 
olarak nitelendirilmiştir [10]. Algoritmada, Q 
tablosu olarak adlandırılan tablonun elemanları 
her durum değişiminde güncellenmektedir [1]. 
Bu tabloda her bir s durumu ve a eylemi çifti için 

),( asQ olarak nitelendirilen Q değeri 
bulunmaktadır. Ajan, çevrenin ts  durumundan 

1ts durumuna geçişinde yapılan eylemin ( ta ) 
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ardından 1tr olarak gösterilen ödülü almaktadır.  
Q değerleri Denklem (1) ile tanımlanmaktadır. 

),(),(),( * asQasrasQ         (1) 

Burada; ),( asQ , ),( as durum eylem çifti  için Q 

değeridir. ),(* asQ  , s durumunda a eyleminin 
tamamlanmasının ardından gelen s’ durumunda 
seçilen a’ eylemi ile elde edilebilen en iyi Q 
değeridir. ),( asr , s durumunda a eylemi 
tamamlandığında alınan ödül değeri olup   
gelecekteki ödüllere atanan ağırlığı temsil eden 
azaltma faktörüdür [11]. 
 
Öğrenme süreci, belirli sayıdaki öğrenme 
evresinden meydana gelmektedir. Her öğrenme 
evresi rastgele bir s durumunda başlamaktadır. 
Sonrasında ajan bir a eylemi seçerek ödülünü 
almakta ve yeni durumu gözlemlemektedir. Buna 
bağlı olarak, ajan Q değerlerini durum-eylem 
çiftine göre Denklem (2)’de verilen bağıntıyı 
kullanarak güncellemektedir. 
 






 








),(max),(

),()1(),(

1

1

asQasr

asQasQ

t
a

tt




    (2) 

 
Burada, ),( asQt  güncellenmiş Q değeri, 

),(1 asQt  Q tablosunda önceden kaydedilmiş Q 
değeri ve   algoritmanın öğrenme oranı olup 
önceden kaydedilen ),(1 asQt  değeri ile 
karşılaştırmak için yeni hesaplanan Q değerine 
atanan ağırlığı tanımlamaktadır [11]. 
 

PÖ ile diğer sezgisel metotların birleştirilmesi 
ile elde edilen algoritmalar farklı alanlardaki 
optimizasyon problemlerinin çözümünde son 
yıllarda etkin olarak kullanılmaktadır. PÖ 
optimizasyon problemlerine uygulanabilmesine 
rağmen, matematiksel fonksiyonların global 
minimum değerlerinin elde edilmesi amacıyla 
literatürde kullanılmamıştır. Bu amaçla 
çalışmada MOdifiye Pekiştirmeli Öğrenme 
(MOPÖ) algoritması geliştirilmiştir. Q-öğrenme 
algoritması tabanlı MOPÖ algoritmasında her 
öğrenme evresinde önceki evredeki en iyi çözüm 
bilgisinin yardımıyla orijinal çevre boyutunda bir 
alt çevre oluşturulmaktadır. 

 

Şekil 1’den görüldüğü gibi, önceki öğrenme 
evresinden elde edilen en iyi ),( asQ  değeri, 
yerel optimuma takılmayı önlemek için çevrenin 
(m+1)’inci satırında saklanmaktadır. Ayrıca alt 
çevre, orijinal çevre boyutunda (m+2)’nci 
satırdan (2m+1)’nci satıra kadar önceki öğrenme 
evresinde elde edilen en iyi değer ve β vektörü 

kullanılarak Denklem (3) yardımıyla 
oluşturulmaktadır. Böylelikle, global optimum, 
algoritma süreci boyunca β değeri ile 
sınırlandırılan alt çevre yardımıylada  
aranmaktadır.  βj vektör ve j=1,2,..,n kadar olup, 
n karar değişkenlerinin sayısıdır. β değerinin 
aralığı verilen probleme bağlı olarak 
seçilebilmektedir [6]. 
 

)β),(;β),(( 11   asQasQrastgele best
t

best
t     (3) 

 
MOPÖ algoritmasında, alt çevre oluşturulduktan 
sonra orijinal çevre ve alt çevre iyiden kötüye 
doğru sıralanmaktadır. Bu sayede, bir önceki 
öğrenme evresinden elde edilen en iyi çözüm ve 
alt çevre, orijinal çevre ile karşılaştırılmaktadır. 
Yeni çözümlerden biri daha iyi amaç fonksiyonu 
değeri sağlıyorsa, yeni değer orijinal çevrenin 
içine dahil edilirken kötü değer çevreden 
çıkarılmaktadır. 

 
Şekil 1. Orijinal-alt çevre ilişkisi. 

 
Burada, m çevrenin boyutunu, n karar 

değişkenlerinin sayısını ve t öğrenme evresinin 
sayısını ifade etmektedir. Algoritmanın çözüm 
adımları Şekil 2’de gösterilmektedir. 

 
Başlangıç t=0. β, α, γ ayarla  
While t <= tmax   (tmax=maksimum öğrenme evresi sayısı) 
      If t=0, başlangıç ),( asQ değerlerini oluştur  
      Amaç fonksiyonunun değerlerini hesapla   
      Else 

      En iyi ),(1 asQbest
t   sakla  

     99.0*1 tt   

      Alt çevreyi Denklem (3) ile oluştur 
     Amaç fonksiyonunun değerlerini hesapla 
     Çevre ve alt çevreyi iyiden kötüye doğru sırala  
     end if 
    En iyi ),( asQbest

t  bul      

    ),( asrt değerini Denklem (4) ile hesapla 

    ),( asQt değerlerini Denklem (2) ile güncelle 
t=t+1 

End while 

Şekil 2. MOPÖ algoritma adımları. 
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MOPÖ algoritmasında ),( asrt olarak 
belirtilen ödül değeri, s durumunda yapılan a 
eyleminin amaç fonksiyonunu nasıl etkilediğini 
belirlemektedir. Geliştirilen ödül fonksiyonu 
Denklem (4)’de verilmektedir. 
 

0)
),(

),(),((lim
0),(




 asQ
asQasQ

t

t
best
t

asrt

                   (4) 

 
Burada, ),( asrt ödül fonksiyonu, ),( asQt  Q 

değeri ve ),( asQbest
t  t’nci öğrenme evresinde 

elde edilen en iyi Q değeridir. MOPÖ 
algoritmasında ödül fonksiyonu, en iyi Q değeri 
ile öğrenme evresindeki Q değeri arasındaki 
farkın Q değerine bölümü olarak 
belirlenmektedir. Ödül değerleri, fonksiyonunun 
yapısından dolayı “0” değerine yaklaşmaktadır. 
Diğer bir deyişle MOPÖ algoritmasında toplam 
ödül değerinin, verilen bir fonksiyonun global 
yada yakın global değerinin bulunabilmesi için 
minimize edilmesi gerekmektedir.  

3. Test Fonksiyonları 

MOPÖ algoritması MATLAB R2009a 
yazılımı kullanılarak kodlanmış ve Intel Core2 
CPU 2.00 GHz, RAM 2 GB bilgisayarda 
çalıştırılmıştır. MOPÖ algoritmasında m çevre 
boyutu 20,  azaltma faktörü 0.2 ve   öğrenme 
oranı 0.8 olarak alınmıştır. β vektörü verilen 
problemin maksimum ve minimum sınırlarının 
mutlak değer olarak toplamı olarak belirlenmiştir 
[6].  
 

İlk olarak MOPÖ ve PÖ (Q-öğrenme) 
algoritmalarının performansları 

2

1
21 1
),(

x
x

xxf


  

fonksiyonu ile karşılaştırılmıştır. Fonksiyonun 
global minimum değeri )0,10(  
aralığında 10),( 21 xxf  olmaktadır. MOPÖ ve 
PÖ algoritmalarının yakınsama davranışları Şekil 
3’de görülebilmektedir.  
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Şekil 3. PÖ ve MOPÖ karşılaştırılması. 

 

Şekilden görüldüğü gibi MOPÖ 1176 
öğrenme evresinde global minimum değere 
ulaşırken PÖ algoritması bu değere ulaşmak için 
7337 öğrenme evresine ihtiyaç duymaktadır. 
 

MOPÖ algoritmasının performansı ayrıca 10 
farklı test fonksiyonu üzerinde Tablo 1’de 
verilen algoritmalar ile karşılaştırılmıştır. 
Sonuçlar; en iyi fonksiyon değeri, fonksiyon 
çözüm sayısı ve ortalama hata olarak Tablo 2’de 
verilmiştir. En iyi fonksiyon değeri, kabul edilen 
hassasiyet değeri göz önüne alınarak global 
çözüme en yakın değer olarak 
değerlendirilmiştir. Hassasiyet değeri, bulunan 
en iyi fonksiyon değeri ile teorik global değer 
arasındaki farkın mutlak değeri olarak 
belirlenmiştir. Tüm test fonksiyonları için bu 
değer “0” olarak seçilmiştir. MOPÖ algoritması 
verilen hassasiyet değeri sağlanana kadar 
çalıştırılmıştır. Fonksiyon çözüm sayısı en iyi 
fonksiyon değerinin elde edildiği çözüm sayısı 
olarak ifade edilmiştir. Her bir çözümde elde 
edilen en iyi fonksiyon değeri ile teorik global 
optimum değer arasındaki farkların ortalaması 
ise “ortalama hata” olarak değerlendirilmiştir. Bu 
değer her bir farklı denemede algoritmanın 
çözüm kararlılığını temsil etmesi açısından 
oldukça önemli bir parametredir.  
 

Tablo 1. Fonksiyonlar ve karşılaştırılan 
algoritmalar. 

Fonksiyon Kaynak 
F3 [12] 
F3-F7 [7] 
F1-F6-F7-F9-F10 [9] 
F1 [13] 
F4 [14] 
F8 [15] 
F1-F2-F3-F5-F6-F7 [16] 
F3-F5 [8] 

 
MOPÖ algoritmasının performansının 

değerlendirilmesinde kullanılan fonksiyonlar ve 
özellikleri aşağıda sıralanmıştır. F7 ve F9 
fonksiyonları sırasıyla 6 ve 8 değişkenlidir. F1 
fonksiyonu 3 değişkenli olup diğer fonksiyonlar 
iki değişkenlidir. 
 
F1:  
De Jong (3 değişken) 





n

i
ixxf

1

2)(
 

Çözüm aralığı: nixi ,....,2,1;12.512.5   
Global minimum:  0)(,)0,0,0(  xfx  
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F2:  
Easom (2 değişken) 

))()(exp()cos()cos(),( 2
2

2
12121   xxxxxxf  

Çözüm aralığı: 100,100 21  xx  
Global minimum: 1),(,),(),( 2121  xxfxx   
F3:  
Goldstein-Price (2 değişken) 

 
 2

2212
2
11

2
21

2
2212

2
11

2
21

273648123218)32(30(*

361431419()1(1),(

xxxxxxxx

xxxxxxxxyxf





Çözüm aralığı: 2,2 21  xx  
Global minimum: 3),(,)1,0(),( 2121  xxfxx  
 
F4:  
Drop wave (2 değişken) 

2)(
2
1

)12cos(1
),(

2
2

2
1

2
2

2
1

21





xx

xx
xxf  

Çözüm aralığı: 12.5,12.5 21  xx  
Global minimum:  1),(,)0,0(),( 2121  xxfxx  
 
F5:  

Shubert (2 değişken) 





5

1
2

5

1
121 )1)1cos((.*)1)1cos((.),(

ii
xiixiixxf  

Çözüm aralığı: 10,10 21  xx  
760 adet yerel minimum noktası 
18 adet global minimum:  7309.186),( 21 xxf  

F6: 
Zakharov (2 değişken) 

  
  



n

i

n

i

n

i
iii xixixxf

1 1 1

422 )5.0()5.0()(  

Çözüm aralığı: nixi ,....,2,1,105   
Global minimum:  0)(,)0,0(  xfx  

F7: 
Hartman (6 değişken) 

 
 
















4

1 1

2)(exp)(
i

n

j
ijjiji pxcxf   

Çözüm aralığı: 6,..,2,1,10  jx j  
Global minimum:   

32.3)(
)657.0,311.0,275.0,477.0,150.0,201.0(





xf
x

 

 ve p değerleri [9]’dan alınabilir. 

F8: 

Rastrigin (2 değişken) 

 




n

i
ii xxnxf

1

2 )2cos(1010)(   

Çözüm aralığı: nixi ,...,2,1,12.512.5   
Global minimum:  0)(,)0,0(),( 21  xfxx  

F9: 

Griewank (8 değişken) 

 
 



n

i

n

i

i
i i

xxxf
1 1

2 1)cos(4000/)(  

Çözüm aralığı: nixi ,...,2,1,600300   
Global minimum:  0)(,)0,......,0(  xfx  

F10: 
Branin (2 değişken) 

10)cos()
8
11(10)65

4
1.5()( 1

2
1

2
122  xxxxxf



Çözüm aralığı: 150,105 21  xx  
Global minimum noktaları:  
  




4
5)()475.2,3(),275.2,(),275.12,(  xf  

 
Tablo 2’de MOPÖ algoritmasının 100 defa 

çalıştırılması neticesinde elde edilen değerler 
verilmiştir. MOPÖ tüm test fonksiyonları için 
literatürde verilen global minimum değerleri 
bulabilmektedir. Ortalama hata değerlerine 
bakıldığı zaman, MOPÖ algoritması ile F7 
fonksiyonu hariç tüm fonksiyonlarda her 
çözümde global minimum değerlerin elde 
edilebildiği görülmektedir. Bunun yanında F7 
fonksiyonu için elde edilen ortalama hata değeri 
de karşılaştırılan diğer algoritmalara göre daha 
düşüktür. Fonksiyon çözüm sayılarının 
karşılaştırılması durumunda MOPÖ’nün diğer 
algoritmalara göre daha fazla çözüm sayısında 
sonuca ulaştığı görülmektedir. Bunun nedeni tüm 
test fonksiyonları için MOPÖ algoritmasında 
hassasiyet değerinin “0” olarak seçilmesidir. 
Diğer bir deyişle MOPÖ teorik global minimum 
değer elde edilinceye kadar çalıştırılmıştır. Elde 
edilen sonuçlara göre geliştirilen MOPÖ 
algoritmasının fonksiyon optimizasyonunda 
oldukça başarılı olduğu görülmektedir.  
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Tablo 2. MOPÖ ve karşılaştırılan 
       algoritmaların sonuçları 

Fonksiyon Algoritma 

En iyi 
fonksiyon 

değeri 
 

Fonksiyon 
çözüm 
sayısı 

Ortalama 
hata 

F1 [13] - - 3e-08 
 [9] - - 7.69e-29 
 [16] - - 0.00004 
 MOPÖ 0 36955 0 

F2 [16] - - 0.00009 
 MOPÖ -1 40680 0 

F3 [12] 3 9000 - 
 [7] - - - 
 [8] 3 2573 - 
 [16] - - 0.00012 
 MOPÖ 3 33920 0 

F4 [14] -9.99e-01 16801 - 
 MOPÖ -1 35640 0 

F5 [8] 186.7309 2568 - 
 [16]     - - 0.00007 
 MOPÖ 186.7309a      16740 0 

F6 [9]      - - 5.71e-27 
 [16]      - - 0.00005 
 MOPÖ    0 37016 0 

F7 [9]  - - 4.47e-11 
 [16] - - 0.00024 
 [7] - - - 
 MOPÖ -3.32b 30400 2.34e-16 

F8 [15] - -  0c 

 MOPÖ 0 33500 0 
F9 [9] - - 6.23e-22 

 MOPÖ 0 37010 0 
F10 [9] - - 2.61e-13 

 MOPÖ 0.3979a 7680 0 

aTeorik global optimum değer 4 ondalıklı olarak alınmıştır. 
b Teorik global optimum değer 2 ondalıklı olarak alınmıştır. 
cAlgoritma 30 defa çalıştırılmıştır. 
 

4. Sonuçlar 

Çalışmada PÖ yönteminin modifiye edilmesi 
ile MOPÖ yöntemi geliştirilmiştir. MOPÖ ve PÖ 
algoritmaları karşılaştırılmış ve MOPÖ’nün çok 
daha az sayıda öğrenme evresi ile verilen 
fonksiyon için teorik global minimum değeri 
bulabildiği gösterilmiştir. 10 adet test fonksiyonu 
üzerinde MOPÖ ile elde edilen sonuçlar 
literatürdeki mevcut yöntemlerle 
karşılaştırılmıştır. Elde edilen sonuçlar 
geliştirilen MOPÖ algoritmasının çok değişkenli 
fonksiyonlar dahil olmak üzere fonksiyon 
minimizasyonunda oldukça başarılı olduğunu 
göstermektedir.  

5. Teşekkür 

Bu çalışma Pamukkale Üniversitesi Bilimsel 
Araştırma Projeleri Biriminin desteklemiş 
olduğu BAP-FBE-063 nolu proje kapsamında 
gerçekleştirilmiştir. 
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