

 Akıllı Sistemlerde Yenilikler ve Uygulamaları Sempozyumu 2016 Bildiriler Kitabı

- 213 -

Gezgin Satıcı Probleminin Çözümüne Yönelik Yeni Bir Sezgisel Çözüm

Algoritması

Özgür BAŞKAN
1
 Cenk OZAN

2

1
İnşaat Mühendisliği Bölümü,

Mühendislik Fakültesi,

Pamukkale Üniversitesi, Kınıklı, DENİZLİ
2
İnşaat Mühendisliği Bölümü,

Mühendislik Fakültesi,

Adnan Menderes Üniversitesi, Efeler, AYDIN

E-mail: obaskan@pau.edu.tr cenk.ozan@adu.edu.tr

Özet

Bu çalışmada Gezgin Satıcı Problemi’nin (GSP)

çözümüne yönelik yeni bir sezgisel çözüm algoritması

geliştirilmiştir. GSP bilindiği gibi aralarındaki

mesafeler bilinen n adet şehrin her birine yalnız bir

kez uğranarak başlangıç noktasına geri dönülmesi

esnasında kat edilen toplam mesafenin en kısa olduğu

turun bulunması olarak tanımlanır. Literatürde

çözümü oldukça zor olan problemlerin başında gelen

GSP, optimizasyon alanındaki araştırmacılar

tarafından uzun yıllardır çalışılmaktadır. Çalışmada

geliştirilen sezgisel algoritma toplum tabanlı olup

uygulaması oldukça basittir. Sayısal uygulamalar

geliştirilen algoritmanın GSP’nin çözümünde

kullanılabileceğini göstermiştir.

1. Giriş

Gezgin Satıcı Problemi (GSP) n adet şehrin her

birinden yalnız bir kez geçen en az maliyetli turun

bulunması problemi olarak tanımlanmaktadır.

Problemin zorluğu n’in büyük değerleri için çözüm

havuzunu oluşturan olası turların sayısının oldukça

fazla olmasındandır. Bu nedenle nokta sayısının az

olduğu durumlarda kesin çözüme ulaşmak mümkün

olabilirken, nokta sayısı arttıkça alternatif tur sayısı

hızla artmakta ve optimum çözümün bulunabilmesi ya

mümkün olamamakta ya da çok fazla süre

gerektirmektedir. GSP günlük hayatta karşımıza çıkan

ulaşım ve lojistik uygulamaları, araç rotalama

problemleri, stok alanındaki malzeme toplama

problemleri, uçaklar için havaalanı rotalaması, vb.

birçok problemin temel mantığını oluşturmaktadır.

GSP matematik, yöneylem araştırması, mühendislik,

yapay zeka ve fizik gibi farklı alanlardaki çok sayıda

araştırmacının ilgisini çekmekte olup literatürde en

çok çalışılan optimizasyon problemlerinden birisidir.

GSP’nin araştırmacıların ilgisini çekmesinin en

önemli nedeni kolayca formüle edilmesine rağmen

çok zor çözülebilen NP-zor sınıfı problemlerden birisi

olmasıdır.

GSP'nin çözüm yöntemleri genel olarak ikiye

ayrılmaktadır. (1) Dal-Sınır, Dinamik Programlama,

Dal-Kesme vb. kesin çözümün elde edilebildiği

yöntemler bu gruba girmektedir [1]. Bu tür yöntemler

belli bir boyuta kadar olan problemler için başarılı

sonuçlar veriyor olsa da GSP’de nokta sayısı arttıkça

çözüm için gerekli olan işlem süresinin çok fazla

olmasından dolayı optimum sonuçlara ulaşmak

imkansız olabilmektedir. (2) Optimum çözümün

bulunması kesin olmayan ancak daha az sayıda işlem

gerektiren yöntemlerdir. Bu yöntemler genel olarak

sezgisel yöntemler olarak tanımlanır ve optimum

sonucu garanti etmemekle birlikte, kısa çözüm süresi

ile tatmin edici sonuçlar alınabilmektedir.

Literatürde GSP’nin hızlı ve etkin çözümü amacıyla

birçok yöntem geliştirilmiştir. Tamsayı ve dinamik

programlama [2-4] yöntemleri kullanıldığı gibi son

yıllarda sezgisel metotların GSP çözümündeki

performanslarının test edilmesi amacıyla birçok

çalışma yapılmıştır. Örnek olarak GSP’nin

çözümünde Yapay Sinir Ağları ve Genetik Algoritma

(GA) metotları kullanılmıştır [5-6]. Bunun yanında

modifiye Karınca Kolonisi Optimizasyonu (KKO)

algoritması GSP’ye uygulanmış ve literatürdeki diğer

algoritmalarla karşılaştırılmıştır [7]. GSP’nin

çözümünde değişken stratejili çoklu KKO algoritması

geliştirilmiş ve başarılı sonuçlar alınmıştır [8]. Benzer

şekilde iyileştirilmiş KKO ile GSP çözümü

gerçekleştirilmiştir [9]. Yerel arama stratejili GA

GSP’ye uygulanmış ve başarılı sonuçlar elde

 Akıllı Sistemlerde Yenilikler ve Uygulamaları Sempozyumu 2016 Bildiriler Kitabı

- 214 -

edilmiştir [10]. Pekiştirmeli öğrenme ile GA metodu

birleştirilmiş ve farklı GSP’ler üzerinde test edilmiştir

[11]. GA’dan faydalanarak rota planlamasına yönelik

bir uygulama yazılımı geliştirilmiştir [1].

Literatürden görülebileceği gibi son yıllarda sezgisel

metotlar GSP’nin çözümünde geniş bir kullanım alanı

bulmaktadır. Bu çalışmada da bu amaçla yeni bir

sezgisel çözüm algoritması geliştirilmiştir. Çalışmanın

ikinci bölümünde GSP’nin matematiksel ifadesi,

üçüncü bölümde geliştirilen sezgisel algoritma,

sonraki bölümde sayısal uygulamalar ve son bölümde

sonuçlar ve öneriler yer alacaktır.

2. Problem formülasyonu

GSP; n adet şehri dolaşan, her birinden yalnız bir kez

geçen ve başladığı noktaya dönen en az maliyetli

turun belirlenmesi problemidir ve amaç fonksiyonu

Denklem (1)’de verildiği gibi ifade edilebilir [12]. n

adet şehirden oluşan bir GSP’de olası tur sayısı

(1)! / 2n olarak belirlenebilir. Örnek olarak 20

şehirden oluşan bir GSP’de olası tur sayısı

6.08*10
16

’dır. Denklem (1)’de verilen amaç

fonksiyonuna ait kısıtlar Denklem (2-5)’de

verilmiştir.

1 1,

min
n n

ij ij

i j i j

z c x
  

  (1)

1,

1, 1,2,...,
n

ij

i i j

x j n
 

  (2)

1,

1, 1,2,...,
n

ij

j j i

x i n
 

  (3)

 
, ,

1, 1,2,....,
n

ij

i j S i j

x S S n
 

    (4)

1, noktasından noktasına gidiliyor ise

0, aksi durumda
ij

i j
x


 


 (5)

Burada; ijc , i ve j noktaları arasındaki mesafeyi; ijx , i

noktasından j noktasına gidilip gidilmediğini gösteren

ifade olup gerçekleşmesi halinde 1, aksi durumda ise

0 değerini almaktadır. Denklem (2-3)’de verilen

kısıtlar her noktaya yalnız bir kez uğranılmasını

sağlamak amacıyla kullanılmaktadır. Olası alt

turlardan kurtulmak amacıyla Denklem (4)’de verilen

kısıt kullanılmaktadır.

3. Sezgisel çözüm algoritması

Geliştirilen sezgisel algoritmada iki parametre

kullanılmaktadır. Bunlardan biri tüm toplum tabanlı

sezgisel yaklaşımlarda kullanılan toplum büyüklüğü

(m) ve diğeri ise jenerasyon sayısıdır. Bu

değişkenlerin dışında algoritmanın başka tür

parametre içermemesi yöntemin parametre

duyarlılığını azaltmaktadır. Geliştirilen algoritma 3

adımdan oluşmakta olup MATLAB kodu Ekler

bölümünde verilmiştir.

ADIM 1: İlk olarak toplum büyüklüğü (m) ve

probleme özgü şehir sayısı n olarak verilirse m*(n+1)

boyutunda çözüm matrisi oluşturulur.

111 1(1)

1 (1)
*(1)

A

n

m m n m
m n

za a

a a z






   
   

    
     

(6)

Burada; aij değerleri (i=1,2,…,m ; j=1,2,…,(n+1))

GSP’de şehir numaralarını temsil etmektedir. A

matrisindeki ilk ve son sütundaki elemanlar aynı

değere sahip olup probleme özgü olası turun başlayıp

bittiği şehir numarası olarak temsil edilmektedir. Bu

değerlerin dışındaki matris elemanları Adım 1’de

rastgele oluşturulur. Ayrıca, z değeri (z=1,2,….,m) A

matrisindeki her bir satırda belirlenen olası tur

konfigürasyonuna bağlı olarak Denklem (1) ile elde

edilen amaç fonksiyonu değeridir.

ADIM 2: Bu adımda Adım 1’de oluşturulan başlangıç

toplumundaki her bir satırdaki olası turların şehir

numaraları (başlangıç ve bitiş numaraları hariç) kendi

içlerinde rastgele olarak değiştirilir. Örnek olarak

Şekil 1’de verilen 5 adet şehirden oluşan GSP’de

başlangıç toplumunun ilk satırı Tablo 1’de görüldüğü

gibi rastgele değiştirilerek yeni bir vektör oluşturulur.

Şekil 1. Gezgin Satıcı Problemi.

Tablo 1. Rastgele Olası Tur Oluşturma

 1

 2

 3

 5 4

 Akıllı Sistemlerde Yenilikler ve Uygulamaları Sempozyumu 2016 Bildiriler Kitabı

- 215 -

Adım 1

(1. satır vektörü)

1 3 2 4 5 1

Adım 2

(1. satır vektörü)

1 5 4 2 3 1

Elde edilen yeni olası tur vektörü için amaç

fonksiyonu Denklem (1) ile hesaplanır ve elde edilen

değer eski değerden daha iyi ise Adım 2’de elde

edilen yeni vektör eski vektörün yerini alır. Aksi

durumda Adım 3’e geçilir. Bu süreç A matrisinin tüm

satırlarına uygulanır.

ADIM 3: Bu adım, Adım 2’de elde edilen yeni

vektörün daha iyi sonuç vermemesi durumunda

uygulanır. Tablo 2’de görüldüğü gibi bir önceki

jenerasyonda en iyi amaç fonksiyonu değerini veren

olası tur vektörü içinde rastgele seçilen 2 adet şehir

numarasının değiştirilmesi (mutasyon) neticesinde

yeni bir olası tur vektörü oluşturulur.

Tablo 2. En iyi tur vektörünün mutasyonu

En iyi tur vektörü 1 4 2 3 5 1

Mutasyona uğramış

en iyi tur vektörü

1 3 2 4 5 1

Bu aşamadan sonra elde edilen yeni tur vektörünün

Denklem (1) yardımı ile amaç fonksiyonu değeri

hesaplanır. Elde edilen değer toplumdaki tur

vektörünün amaç fonksiyonu değeri ile karşılaştırılır.

Bu değer öncekinden daha iyi ise vektör değiştirilir

aksi durumda bir sonraki jenerasyona gidilir. Bu

adımda amaç önceki jenerasyonlarda elde edilen en

iyi tur vektörlerinin etkisinin sonraki jenerasyonlara

aktarılmasını sağlamak ve bu sayede belli sayıdaki

jenerasyondan sonra optimum ya da optimuma yakın

sonuçlara ulaşılabilmesini sağlamaktır.

4. Sayısal uygulamalar

Çalışmada geliştirilen sezgisel algoritma 7,15 ve 16

adet şehirden oluşan GSP’ler üzerinde test edilmiştir.

7 ve 15 şehirli GSP’lere ait uzaklık matrisleri Tablo 3

ve 4’de verilmiştir. 16 şehirli GSP uzaklık matrisi ise

literatürden elde edilebilir [13]. 7 şehirden oluşan

GSP’de olası tur sayısı 360 iken 15 şehirli GSP’de

olası tur sayısı 4.36*10
10

 olarak belirlenmektedir. 16

şehirli problemde (ulysses16) ise 15 şehirli probleme

göre değişken sayısı 1 adet artmasına rağmen olası tur

sayısı 6.54*10
11

 olmaktadır. Diğer bir deyişle 1 adet

şehrin probleme eklenmesi, olası tur sayısını 15 kat

artırmaktadır.

Tablo 3. GSP (7 şehir)

1 2 3 4 5 6 7

1 - 75 99 9 35 63 8

2 51 - 86 46 88 29 20

3 100 5 - 16 28 35 28

4 20 45 11 - 59 53 49

5 86 63 33 65 - 76 72

6 36 53 89 31 21 - 52

7 58 31 43 67 52 60 -

Tablo 4. GSP (15 şehir)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 - 1 2 4 9 8 3 2 1 5 7 1 2 9 3

2 1 - 5 3 7 2 5 1 3 4 6 6 6 1 9

3 2 5 - 6 1 4 7 7 1 6 5 9 1 3 4

4 4 3 6 - 5 2 1 6 5 4 2 1 2 1 3

5 9 7 1 5 - 9 1 1 2 1 3 6 8 2 5

6 8 2 4 2 9 - 3 5 4 7 8 3 1 2 5

7 3 5 7 1 1 3 - 2 6 1 7 9 5 1 4

8 2 1 7 6 1 5 2 - 9 4 2 1 1 7 8

9 1 3 1 5 2 4 6 9 - 3 3 5 1 6 4

10 5 4 3 4 1 7 1 4 3 - 9 1 8 5 2

11 7 6 5 2 3 8 7 2 3 9 - 2 1 8 1

12 1 6 9 1 6 3 9 1 5 1 2 - 5 4 3

13 2 6 1 2 8 1 5 1 1 8 1 5 - 9 6

14 9 1 3 1 2 2 1 7 6 5 8 4 9 - 7

15 3 9 4 3 5 5 4 8 4 2 1 3 6 7 -

7 şehirli GSP’nin çözümünde toplum büyüklüğü

m=10 ve jenerasyon sayısı 500 olarak alınmıştır. Elde

 Akıllı Sistemlerde Yenilikler ve Uygulamaları Sempozyumu 2016 Bildiriler Kitabı

- 216 -

edilen en iyi tur 74 jenerasyon sonunda elde edilmiş

ve Tablo 5’de verilmiştir. Bulunan sonuçlar literatür

ile uyumludur.

Tablo 5. En iyi tur (7 şehir)

Şehir Numaraları Mesafe

1 7 2 6 5 3 4 1 158

15 şehirli GSP’nin çözümünde m=50 ve jenerasyon

sayısı 10000 alınmış ve literatürde verilen en iyi tur

ve mesafe değerleri 5531 jenerasyon sonunda elde

edilmiştir. Söz konusu problemin en iyi mesafe değeri

17 olup bu değeri sağlıyan 2 farklı tur konfigürasyonu

Tablo 6’da verilmiştir.

Tablo 6. En iyi tur (15 şehir)

En iyi tur (1. seçenek) Mesafe

1 9 3 5 8 12 10 15

17

11 13 6 4 7 14 2 1

En iyi tur (2. seçenek)

1 2 8 12 4 7 14 6

17

13 11 15 10 5 3 9 1

Diğer bir örnek olan 16 şehirli GSP’nin (ulysses16)

çözümü için m=50 ve maksimum jenerasyon sayısı

10000 alınmış ve 6144 jenerasyon sonunda literatürde

verilen optimum mesafe değeri elde edilmiştir.

Çözüm sonunda elde edilen optimum tur Tablo 7’de

verilmiştir.

Tablo 7. En iyi tur (16 şehir)

Şehir Numaraları Mesafe

1 14 13 12 7 6 15 5 11

6859

9 10 16 3 2 4 8 1

5. Sonuçlar

Çalışmada GSP’nin çözümüne yönelik yeni bir

sezgisel çözüm algoritması geliştirilmiştir.

Algoritmanın toplum büyüklüğü ve jenerasyon sayısı

dışında parametre içermemesi yöntemin parametrelere

karşı duyarlılığının en az seviyeye indirilmesini

sağlamıştır. Geliştirilen algoritma 7,15 ve 16 adet

şehirden oluşan GSP’ler üzerinde test edilmiş ve

literatürde verilen optimum çözümler her problem

için elde edilmiştir. Bilindiği gibi sezgisel

algoritmaların sürekli olarak iyileştirilmeye açık

olmasından dolayı gelecek çalışmalarda geliştirilen

algoritmaya farklı yerel arama operatörlerinin

eklenmesi ve bu sayede metodun daha etkin hala

getirilebilmesine yönelik çalışmalar yapılacak ve daha

büyük ölçekli GSP’ler üzerinde test edilecektir.

6. Kaynaklar

[1] S.Çolak, “Genetik Algoritmalar Yardımı ile

Gezgin Satıcı Probleminin Çözümü Üzerine Bir

Uygulama”, Çukurova Üniversitesi, Sosyal

Bilimler Enstitüsü Dergisi, 19(3), 2010, 423-

438.

[2] B.W. Douglas, Introduction to graph theory

(Section ed.). Beijing: Pearson Education Asia

Limited and China Machine Press, 2006, 74–78.

[3] S. Climer, W.X. Zhang, “Cut-and-solve: An

iterative search strategy for combinatorial

optimization problems” Artificial Intelligence,

170(8–9), 2006, 714–738.

[4] D.S. Johnson, L.A. McGeoch, The traveling

salesman problem and its variations,

combinatorial optimization. London: Springer

Press, 2004, 445–487.

[5] K.S. Leung, H.D. Jin, Z.B. Xu, “An expanding

self-organizing neural network for the traveling

salesman problem”, Neurocomputing, 6, 2004,

267–292.

[6] H. D. Nguyen, I. Yoshihara, K. Yamamori, M.

Yasunaga, “Implementation of an effective

hybrid GA for large-scale traveling salesman

problem”, IEEE Transactions on System, Man,

and Cybernetics – Part B, 37(1), 2007, 92–99.

[7] G. Shang, Z. Lei, Z. Fengting, Z. Chunxian,

“Solving Traveling Salesman Problem by Ant

Colony Optimization Algorithm with

Association Rule”, Third International

Conference on Natural Computation, 2007.

[8] I. Ellabib, P. Calamai, O. Basir, “Exchange

strategies for multiple ant colony system”,

Information Sciences, 177(5), 2007, 1248–1264.

[9] L. Li, S. Ju, Y. Zhang, “Improved ant colony

optimization for the traveling salesman problem”

In Proceedings of the 2008 international

 Akıllı Sistemlerde Yenilikler ve Uygulamaları Sempozyumu 2016 Bildiriler Kitabı

- 217 -

conference on intelligent computation

technology and automation, 1, 2008, 76–80.

[10] M.F. Taşgetiren, P.N. Suganthan, Q.K. Pan,

Y.C. Liang, “A genetic algorithm for the

generalized traveling salesman problem”, In

Proceedings of the 2007 IEEE congress on

evolutionary computation, Singapore, 2007,

2382–2389.

[11] F. Liu, G.Z. Zeng, “Study of genetic algorithm

with reinforcement learning to solve the TSP”,

Expert System with Applications, 36(3), 2009,

6995–7001.

[12] G. Dantzig, R. Fulkerson, S. Johnson, “Solution

of a large-scale traveling salesman problem”,

Operations Research, 2, 1954, 393-410.

[13] TSPLIB.http://www.iwr.uniheidelberg.de/groups

/comopt/software/TSPLIB95/tsp/, 2014.

 Akıllı Sistemlerde Yenilikler ve Uygulamaları Sempozyumu 2016 Bildiriler Kitabı

- 218 -

7. Ekler

NP=10; %toplum büyüklüğü

D=7; %şehir sayısı

maxgen=500; %maksimum jenerasyon sayısı

load maliyet.txt %maliyet matrisi

for i=1:NP

 y=randperm(D);

 y(y==1)=[];

 x(i,1:D-1)=y;

end

k=ones(NP,1);

l=ones(NP,1);

n=zeros(NP,1);

x=[k x(:,1:D-1) l n];

for i=1:NP

 for j=1:D

 x(i,D+2)=x(i,D+2)+maliyet(x(i,j),x(i,j+1));

 end

end

for gen=1:maxgen

 for i=1:NP

 x1=x(i,2:D);

 r=x1(randperm(length(x1)));

 m(i,1:D+1)=x(i,1:D+1);

 m(i,2:D)=r;

 m(i,D+2)=0;

 for j=1:D

 m(i,D+2)=m(i,D+2)+maliyet(m(i,j),m(i,j+1));

 end

 if m(i,D+2)<x(i,D+2)

 x(i,:)=m(i,:);

 else

 if gen>1

 w1=round(rand*(D-2)+2);

 w2=round(rand*(D-2)+2);

 best_c=best;

 best(best_c==w1)=w2;

 best(best_c==w2)=w1;

 m(i,2:D)=best(1,2:D);

 m(i,D+2)=0;

 for j=1:D

 m(i,D+2)=m(i,D+2)+maliyet(m(i,j),m(i,j+1));

 end

 if m(i,D+2)<x(i,D+2)

 x(i,:)=m(i,:);

 end

 end

 end

 end

 [fmin,K]=min(x(:,D+2));

 best=x(K,:);

end

best %en iyi tur

fmin % amaç fonksiyonu en iyi değeri

