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Abstract 

The Continuous Network Design Problem (CNDP) is recognized to be one of the most difficult problems in transportation 

field since the bilevel formulation of the CNDP is nonconvex. On the other hand, the computation time is crucial importance 

for solving the CNDP because the algorithms implemented on real sized networks require solving traffic assignment model 

many times, which is the most time consuming part of the solution process. Although the methods developed so far are 

capable of solving the CNDP, an efficient algorithm, which is able to solve the CNDP with less number of User Equilibrium 

(UE) assignments, is still needed. Therefore, this paper deals with solving the CNDP using MOdified Differential Evolution 

(MODE) algorithm with a new local search and mutation operators. For this purpose, a bilevel model is proposed, in which 

the upper level problem deals with minimizing the sum of total travel time and investment cost of link capacity expansions, 

while at the lower level problem, UE link flows are determined by Wardrop’s first principle. A numerical example is 

presented to compare the proposed MODE algorithm with some existing methods. Results showed that the proposed 

algorithm may effectively be used in order to reduce the number of UE assignments in solving the CNDP. 
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1. Introduction 

A Continuous Network Design Problem (CNDP) is to determine the set of link capacity expansions and the 

corresponding equilibrium link flows for which the measure of performance index for the network is optimal 

(Chiou, 2005). The CNDP can be described as one of the most computationally intensive problem in 

transportation field. Since the multiple objectives exist in the CNDP, it can be formulated as bilevel programming 
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model which is difficult to solve. The difficulty stems from solving the lower level problem for each feasible set 

of upper level decision variables. In the CNDP, upper level objective function can be defined as the sum of total 

travel time and investment cost of link capacity expansions whilst the lower level is formulated as traffic 

assignment model which can be static or dynamic.  

The first formulation for solving the CNDP was proposed by Abdulaal and LeBlanc (1979) using Hooke-

Jeeves (HJ) heuristic algorithm. Tan et al. (1979) attempted to solve the CNDP by expressing the traffic 

equilibrium problem by a set of nonlinear and nonconvex, but differentiable constraints in terms of path flow 

variables. Suwansirikul et al. (1987) developed Equilibrium Decomposition Optimization (EDO) algorithm for 

solving the CNDP. Marcotte and Marquis (1992) used an efficient heuristic procedure for solving the CNDP. In 

addition, sensitivity-based heuristic algorithms were developed for the CNDP in different studies (Cho, 1988; 

Friesz et al., 1990; Yang, 1995; 1997). Furthermore, Friesz et al. (1992) used Simulated Annealing (SA) 

approach to solve the CNDP. Their results showed that the proposed heuristic is more efficient than Iterative 

Optimization Assignment (IOA) algorithm, HJ algorithm and EDO approach. Davis (1994) used the generalized 

reduced gradient method and sequential quadratic programming to solve the CNDP. Meng et al. (2001) used 

single level model in solving the CNDP in order to avoid the disadvantages of the bilevel programming model. 

Chiou (2005) proposed gradient based methods to solve the CNDP and achieved good results especially when the 

congested road networks are considered. Similarly, Ban et al. (2006) presented a relaxation method to solve the 

CNDP when the lower level is a nonlinear complementary problem. Karoonsoontawong and Waller (2006) 

proposed SA, Genetic Algorithm (GA), and random search techniques to solve the mentioned problem. Their 

study showed that GA performed better than the others on the test networks. Xu et al. (2009) used SA and GA 

algorithms to find optimal solutions of the CNDP. They emphasized that quality of the results are dependent on 

the demand level. Recently, Wang and Lo (2010) proposed an approximation method for finding the globally 

optimal solution of the CNDP and Li et al. (2012) presented a viable global optimization method for the CNDP.  

Up to date, studies have been focused on the CNDP are generally based on the heuristic approaches, and 

guarantee finding a solution which is at least locally optimal. Nevertheless, an efficient heuristic algorithm, 

which is capable of solving the CNDP with less number of User Equilibrium (UE) assignments, is still needed. 

Therefore, this paper deals with determining the optimal link capacity expansions for a given road network using 

Modified Differential Evolution (MODE) algorithm.  

The rest of this paper is organized as follows. In Section 2, notation for the classical CNDP is given. The 

problem formulation is summarized in Section 3. In the next section, proposed solution method is presented. In 

Section 5, numerical application is conducted on example test network. Conclusions are drawn in Section 6. 

2. Notation 

A   the set of links 

rsK  the set of paths between O-D pair SsRrrs  ,  

R  the set of origins 

S  the set of destinations 

D  the vector of O-D pair demands,   SsRrDrs  ,D  

f  the vector of path flows,   rs

rs

k KkSsRrf  ,,,f  

t  the vector of link travel times,   Aayxt aaa  ),(t  

u  the vector of upper bound for link capacity expansions,   Aaua  ,u  

x  the vector of equilibrium link flows,   Aaxa  ,x  

y  the vector of link capacity expansions,   Aaya  ,y  
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ad  the cost coefficient, Aa   

a  the link capacity, Aa  

 Z upper level objective function 

 z lower level objective function 

  the conversion factor from investment cost to travel times 

)( aa yg the investment function, Aa   

rs

ka ,  the link/path incidence matrix variables, AaKkS,sRr rs  ,, . 1, rs

ka  if route k between 

O-D pair rs uses link a, and 0, rs

ka  otherwise 

a , a  the parameters of link cost function, Aa  

3. Problem formulation 

The CNDP can be formulated as follows: 





Aa

aaaaaa
,

ygxyxt,Z ))(),(()(min yx
yx

           (1) 

s.t. Aauy aa  ,0             (2) 

where )(yx is vector of the equilibrium link flows which is the solution of the following convex optimization 

problem: 

 



Aa

aa dwywtz
ax

0

),(min
x

            (3) 

 

 s.t.    rsrs

Kk

rs
k KkSsRrDf 



,,           (4) 

  




rs Kk

rs
rs

ka
rs

ka

rs

KkAaSsRrfx ,,,,         (5) 

  rs
rs

k KkSsRrf  ,,0            (6) 

In general, the users’ route choice is characterized by the UE assignment in solving the CNDP. The UE 

assignment problem is to find the link flows, x, which satisfies the user-equilibrium criterion when all the Origin-

Destination (O-D) demands have been assigned. On the other hand, link capacity expansions without considering 

the response of road users may actually increase level of congestion on the road network. Therefore, prediction of 

traffic flows is crucial importance in solving the CNDP.  
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4. Solution method 

4.1. Basics of  DE 

The Differential Evolution (DE) is a simple and powerful algorithm which is introduced by Storn and Price 

(1995) to solve various optimization problems. The DE guides the initial population towards to vicinity of the 

global or near-global optimum solution for a given optimization problem through repeated cycle of mutation, 

crossover and selection (Liu et al., 2010). In the DE, three control parameters are used to conduct the 

optimization process. One of them is the number of populations (NP) that represents the number of solution 

vectors used in the solution process. The second one is the mutation factor (F), which is used to obtain mutant 

vector from selected three solution vectors in the population and recommended to set between 0.5-1 by Storn and 

Price (1995). The last one is the crossover rate (CR) that is the probability of consideration of the mutant vector. 

The recommended range of the crossover rate is [0.8, 1] by Storn and Price (1995). In this study, F and CR are 

selected as 0.8 for all numerical applications. The procedure of the DE algorithm can be summarized as follows. 

Note that we preferred to describe the solution process of the DE combining with the CNDP in order to provide 

brevity of the paper. 

Generation of the initial population: At generation t, the initial solution vector,  , , ,, ,...,
i

t j t j t j t

i iy y yy , where 

 1,2,...,i N and  1,2,...,j NP , is filled with randomly generated capacity expansions for a set of selected 

links in a given road network by considering upper and lower boundaries. Then their corresponding objective 

function values are calculated using Eqs. (1-6). Note that N represents the number of set of selected links on road 

network. 

 

Mutation: The mutation is performed by adding the weighted difference vector between two solution vectors to a 

third vector. A mutant vector,  , , ,, ,...,
i

t j t j t j t

i im m mm , can be created as shown in Eq. (7). 

 , 1, 2, 3,( )j t t t t

i i i im y F y y                               (7) 

where 
1,t

iy , 
2,t

iy  and 
3,t

iy  are randomly selected capacity expansions within the range [0,NP] at generation t, and 

1, 2, 3,t t t

i i iy y y  . 

 

Crossover: The search process of the DE is completed with the crossover operator. At this step, each member of 

the trial vector,
tj

ir
,

, is chosen from the mutant vector with the probability of CR or from the target vector with 

the probability of (1-CR) as given in Eq. (8). 

 
,

,

,

, if rand (0,1) or 

, otherwise

j t
i randj t

i j t
i

m CR i i
r

y

  
 


                      (8) 

 As can be seen from Eq. (8), CR is compared with the output of a uniform random number 

generator, rand (0,1) , to determine either mutant vector or target vector will provide the member of the trial 

vector. If the random generated number is less than or equal to CR at generation t, the trial parameter is chosen 

from the mutant vector, 
,j t

m ; otherwise the parameter is chosen from the target vector, 
tj ,

y . Additionally, the 

constraint, randi i , where randi is the uniformly distributed random number in the range [1,N], ensures that at 

least one member of the trial vector is taken from the mutant vector. 
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Selection: At this step, the trial vector, 
t

r , is compared with the parent individual 
t

y  by way of determining the 

objective function values and the best one enters to the generation t+1. 

1 , if ( ) ( )

, otherwise

t t t
t

t

f f
 

 


r r y
y

y
                 (9) 

Termination: Mutation, crossover and selection steps of the DE are repeated until a predetermined stopping 

criterion is met or maximum number of generations (MGN) is reached. 

4.2. Improvement mechanisms 

 4.2.1. Improvement 1: Although the DE algorithm is a simple and powerful heuristic algorithm, it can be 

further improved to solve complex optimization problems. For this purpose, we propose the MODE algorithm 

with newly developed local search and mutation operators. First improvement on the standard DE is performed 

by way of taking different mutation strategies into account. Thus, we defined a new parameter called Mutation 

Strategy Consideration Rate (MSCR) to decide which strategy is used at the mutation process of the MODE. The 

basic rule for selecting the mutation strategy is given as follows: 

  

1, 2, 3,
,

1, , 1 2,

( ),

( ), otherwise

if rand (0,1) MSCRt t t
i i ij t

i t best t t
i i i

y F y y
m

y F y y

  
 

 


          (10) 

 The proposed mutation process differs from the base DE in two aspects: one is that we use two mutation 

strategies simultaneous with MSCR parameter, and the other one is that we take the effect of best solution vector 

determined at previous generation into account with probability (1-MSCR). Thus, the MODE has ability to reach 

faster to global or near global optimum solutions. The recommended range of the parameter of MSCR is [0.9, 1]. 

This range has been determined after several experiments made by authors with different value of MSCR. It 

should be emphasized that this parameter setting is crucial importance because low values of MSCR may lead to 

the premature convergence of the MODE. On the contrary, its high values may produce unacceptable solutions 

especially for complex optimization problems. In this study, we used the value of 0.95 of MSCR for solving the 

CNDP. 

 4.2.2. Improvement 2: The second improvement mechanism is a kind of embedding a local search mechanism 

within the DE algorithm. Because of the DE’s stochastic nature, it may suffer from slow convergence to the 

specified problem. On the other hand, increasing the rate of convergence of the algorithm may increase the 

chance of getting trapped to the local optima. It is clear that one of the possible ways to increase the rate of 

convergence is to save the best solution vector at each generation. Thus, we use local search method in order to 

improve the fitness value of the best solution vector that produced at each generation. In other words, our goal 

with this improvement is to push the best solution existed in the population towards to the global or near global 

optimum one step closer. The pseudo-code of the MODE algorithm with proposed improvements is shown in 

Fig. 1. In the local search process, the MODE algorithm generates dx vector from [α1,α2] range to adjust the 

length of jump for the best solution vector at each generation. The values of α1 and α2 are selected according to 

the upper and lower bounds of link capacity expansions, and decreased after local search phase is ended in order 

to reduce the search space around the best solution step by step. If the relative error between the average and best 

objective function values in the memory is less than a predetermined value, the MODE is terminated.   
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Begin 

         Set NP=10; F=0.8; CR=0.8;MSCR=0.95  

         Input α1, α2 

         Initialize a random population  

         For t=1 to MGN 

                   For j=1 to NP 

                             Randomly generate three integers in the range [1,NP], and then determine mutant vector 

                             If rand(0,1)<MSCR 

                                   
, 1, 2, 3,

( )
j t t t t

F  m y y y  

                             Else 

                                   
, 1, , 1 2,

( )
j t t best t t

F


 m y y - y  

                             End If 

                              Randomly generate an integer randi within the range [1,N] 

                              For i=1 to N                 

                                     If rand(0,1)<CR  or randii   

                                            
, ,j t j t

r mi i  

                                     Else 

                                             
, ,j t j t

r yi i  

                                     End If 

                              End For 

                              Determine the objective function values of trial and target vectors (rt,yt) 

                               If ( ) ( )
t t

f fr y  

                                    
1t t

y = r  

                               Else       

                                    
1t t

y = y  

                               End If 

                   End For 

                   Local search started 

                   Find best solution vector in the current population at generation t 

                   Generate dx random vector within [α1,α2] range 

                   
, ,

dx
new t best t

 y y  

                   Determine the objective function value of new target vector 

                               If 
, ,

( ) ( )
new t best t

f fy y  

                                    
, ,best t new t

y = y  

                               Else    

                                    Determine new value of target vector in other direction 

                                    
, ,

dx
new t best t

 y y  

                                         If 
, ,

( ) ( )
new t best t

f fy y  

                                                 
, ,best t new t

y = y  

                                         End If    

                               End If 

                               Decrease the length of jump for next generation 

                              dx dx * 0.9  

                  Local search ended 

                  Stopping criterion 

If   
310

best average

best

Z Z

Z





 , then quit. Otherwise, go to next generation. 

         End For 

End 

Fig. 1. Pseudo-code of MODE 

 



 Ozgur Baskan and Huseyin Ceylan / Procedia - Social and Behavioral Sciences 00 (2013) 000–000 7 

9 

5. Numerical application 

In order to show the performance of the MODE algorithm against the standard DE in solving the CNDP, a 

small-sized example test network, which is adopted from Xu et al. (2009), is used. This network consists of 18 

links and 6 nodes as can be seen in Fig. 2. The travel demand scenarios for this network are given in Table 1.  

 

Fig. 2. 18-link network 

 

Table 1. Travel demands 

Scenario D16 D61 Total demand 
1 5 10 15 
2 15 25 40 

 

The travel time function is defined as shown in Eq. (11), and its corresponding parameters for 18-link network 

can be taken from Xu et al. (2009).  

  
4)(),(

aa

a
aaaaa

y

x
yxt





          (11) 

The upper level objective function is defined as: 






Aa

aaaaaa
,

ydxyxt,Z )),(()(min yx
yx

         (12) 

 s.t. Aauy aa  ,0             (13) 

Upper bound for capacity expansion of link Aa  is set to 20 for fair comparison with results generated by 

Xu et al. (2009). The comparison of CPU times is conducted in terms of the number of UE assignments (NUE) 

since traffic assignment process is the most time consuming part of the algorithms. Results obtained through the 

DE and MODE are also compared with those produced by the SA and GA algorithms on the same network taken 

from Xu et al. (2009), and they are given in Table 2. As it can be seen from Table, the MODE shows steady 

convergence towards the global or near-global optimum for all demand scenarios and achieved good solutions in 

terms of the objective function value and the number of UE assignments. In scenario 1, the DE algorithm 

converges to the value of 190.43 after 86 generations (i.e. 860 number of UE assignments) while the MODE 

achieves slightly better objective function value of 190.33 with much less number of UE assignments than the 

DE. In addition, the SA and GA algorithms produced the value of 205.89 and 191.26 after 15000 and 50000 

number of UE assignments, respectively (Xu et al., 2009). It is clear that the DE and MODE algorithms produce 

much better results than the SA and GA in terms of the objective function value and number of UE assignments. 
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In comparison with the results generated by the DE, SA and GA algorithms, it has been found that the MODE is 

capable of solving the CNDP with much less computational efforts. 

Table 2. Results on the 18-link network 

 Scenario 1 Scenario 2 

 MODE DE SA GA MODE DE SA GA 

y1 0 0 0 0 0 0 0 0 

y2 0 0 0.47 0 10.13 9.29 9.12 11.98 

y3 0 0 0.65 0 17.54 17.34 18.12 16.24 

y4 0 0 0 0 0 0 0 0 

y5 0 0 0 0 0 0 0 0 

y6 5.24 4.93 6.53 4.47 5.95 6.12 4.98 5.40 

y7 0 0 0.80 0 0 0 0.11 0 

y8 0 0 0.25 0 3.48 2.69 1.58 6.04 

y9 0 0 0 0 0 0.12 0 0 

y10 0 0 0 0 0.01 0.04 0 0 

y11 0 0 0 0 0 0 0 0 

y12 0 0 0 0 0 0 0 0 

y13 0 0 0 0 0 0 0 0 

y14 0 0 0.84 0 12.66 12.25 11.66 12.28 

y15 0 0 0.14 0 0 0 2.97 0.82 

y16 7.61 7.69 7.34 7.54 19.99 19.94 19.71 19.99 

y17 0 0 0 0 0 0.12 0 0 

y18 0 0 0 0 0 0 0 0 

Z 190.33 190.43 205.89 191.26 729.58 730.43 739.54 744.39 

NUE 396 860 15000 50000 759 1090 22500 50000 

 

      For scenario 1, the convergence trend of the MODE and DE algorithms is given in Fig. 3. As can be seen in 

Fig. 3, the MODE algorithm with developed mutation strategy and local search operator converges rapidly 

without being trapped in bad local optimum after almost 20 generations. The reason how the MODE converges 

so rapidly to the near global optimum is that it uses information of the best solution vector produced at the 

previous generation with new mutation strategy. The other one, it takes advantage of the local search operator 

after each generation in which the best solution may be pushed to be located closer to the near global optimum 

solutions. 

 To investigate the ability of the MODE in solving the CNDP under heavy demand condition, scenario 2 has 

been considered and results are obtained as given in Fig. 4. In scenario 2, the DE reached the near global 

optimum value of 730.43 after about 1100 UE assignments as shown in Fig. 4. Although the MODE slightly 

outperformed than the DE for given stopping criterion, the MODE reaches the optimal solution with much less 

UE assignments in comparison with the DE. Besides, it is remarkable that the results produced by the SA and GA 

are not as good as those generated by the DE and MODE in terms of both objective function value and required 

number of UE assignments as can be seen in Table 2. 
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Fig. 3. Convergence comparisons of the DE and MODE for scenario 1 
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 According to the results obtained from numerical experiments, it has been found that the MODE is much 

more efficient and effective method than the DE, SA and GA in terms of the objective function value and 

required number of UE assignments in solving the CNDP.  

6. Conclusions 

 In this paper, an efficient heuristic algorithm called MODE was used to solve the CNDP with link capacity 

expansions. The CNDP was modeled as a bilevel programming model which is nonconvex. The upper level 

objective function has been defined as sum of the total travel time and total investment costs of link capacity 

expansions on the network while the lower level problem is formulated as user equilibrium traffic assignment 

model. The Frank-Wolfe method was used to solve the traffic assignment problem at the lower level. Numerical 

computations have been conducted on 18-link network and two demand scenarios were proposed. According to 

the results, the MODE achieved better solutions in all scenarios in terms of objective function value and number 

of UE assignments in comparison with the DE. Moreover, the newly developed mutation strategy and local 

search operator have facilitated the rate of convergence of the base DE algorithm without being trapped in bad 

local optimum.   
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