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             ELEKTROMANYETİK  TEORİ: 

 

 

 

 

 

1. İç yarıçapı a, dış yarıçapı b olan kalın bir küresel kabuk, a<r<b olmak 

üzere =k r2 ifadesiyle değişen bir yük taşımaktadır. Gauss yasasını 

kullanarak, r<a, a<r<b, ve b<r için elektrik alanı hesaplayınız.     

 

 

 

 

 

 

 

2. a ve b yarıçaplarına sahip (a<b) eş-merkezli iki küresel kabuktan içteki Va(a,)=VoP3(cos), dıştaki 

Vb(b,)=VoP5(cos) potansiyellerinde tutulmaktadır. Burada Pn’ler Legendre polinomlarıdır. 

Kabuklar arasında kalan bölgede (yani; a≤r≤b ) elektrik potansiyeli, Laplace denkleminin küresel 

koordinatlardaki çözümünden yola çıkarak hesaplayınız. (Boylamsal simetri olduğuna dikkat 

ediniz.) 
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  İSTATİSTİK MEKANİĞİ: 

 

 

 

 

 

1. Başlangıçta To sıcaklığına sahip tek atomlu bir mol gazın hacmi, Vo’dan 2Vo’a; 

a) Sabit bir sıcaklıkta 

b) Sabit bir basınçta 

Çıkartılırsa, genleşme sırasında yapılan işi (W) ve gaz tarafından emilen ısıyı (Q) hesaplayınız? 

 

 

 

2. İki boyutlu kutudaki tek parçacık için girilebilir durum sayısını bulunuz? 
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      KUANTUM MEKANİĞİ: 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

1. 𝑉0 pozitif bir sabit olmak üzere 𝑉 𝑥 = −𝑉0𝛿(𝑥) çekici bir delta potansiyeline bağlı bir 

parçacık için; 

a) Negatif enerji durumunda bu parçacığın tek bir bağlı duruma sahip olduğunu göstererek 

bağlanma enerjisi ve dalga fonksiyonunu bulunuz. 

b) Parçacığın −𝑎 ≤ 𝑥 ≤ +𝑎 aralığında bulunma olasılığını bulunuz. 

c) 𝐸 > 0 durumunda dalga fonksiyonunu ve sınır koşullarının verdiği denklemleri yazınız. 

 

2. Bir d elektronunu (ℓ = 2,   𝑠 =
1

2
) düşünelim. 

a) Tüm bağlanımlı durumları |𝑗𝑚𝑗  ≡ |𝑗𝑚𝑗 ; ℓ𝑠  ve bağlanımsız durumları |ℓ𝑚ℓ |𝑠𝑚𝑠  yazınız. 

b) Eğer elektron |
5

2

3

2
  durumunda ise hangi 𝑚ℓ değerlerine hangi olasılıklarla sahip olabilir? 

c) Eğer elektron |21 |
1

2

1

2
  durumunda ise    𝐿  . 𝑆  =? 

  S1 S2 T 
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KLASİK MEKANİK: 

 

 

 

 

 

1. Uzunluğu b olan ucunda m kütlesi asılı bir basit sarkaç, dikey olarak yukarı doğru doğru sabit a ivmesi 

ile hareket eden kütlesiz bir desteğe tutturulmuştur. Sistemin kinetik ve potansiyel enerjisini yazarak hareket 

denklemini bulunuz. 

 

2. Dünyanın merkezinden geçecek şekilde açılan bir deliğe bir parçacık bırakılmıştır. Dönme etkilerini 

ihmal ederek, Dünya’nın kütle dağılımının düzgün olduğu kabul edilirse, hareketin basit harmonik hareket 

olduğunu gösteriniz. Salınımın periyodunu bulunuz.  
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SEÇMELİ: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. ℝ3içine gömülü 𝐻2 manifoldu (2-hiperbol) 𝑧2 − 𝑥2 − 𝑦2 = 𝑎2 denklemiyle tanımlanır. 

Burada 𝑎 pozitif bir sabittir. 𝑥 = 𝑎 sinh 𝜓 cos 𝜙, 𝑦 = 𝑎 sinh 𝜓 sin 𝜙 ve 𝑧 = 𝑎 cosh 𝜓 koordinat 

dönüşümüyle 𝑥𝜇 = (𝜓, 𝜙), 𝜇 = 1,2, koordinat haritasında 𝐻2 manifoldu ve 𝑔 = 𝑑𝑥2 + 𝑑𝑦2 −
𝑑𝑧2 metriği için Riemann eğrilik skalerini hesaplayınız. 

 

2. ℝ3’de 𝑥𝜇 =  𝑥1, 𝑥2, 𝑥3 = (𝑟, 𝜙, 𝑧) ile gösterilen silindirik koordinat haritasında 

𝑔 = 𝑔𝜇𝜈 𝑑𝑥
𝜇 ⊗ 𝑑𝑥𝜐 = 𝑑𝑟 ⊗ 𝑑𝑟 + 𝑟2𝑑𝜙 ⊗ 𝑑𝜙 + 𝑑𝑧 ⊗ 𝑑𝑧 

metriği yardımıyla bir 𝑓(𝑟, 𝜙, 𝑧) fonksiyonunun, 𝐴 1-fromunun ve 𝐵 2-formunun dış türevini 

hesaplayınız. Sonuçları gradyan, diverjans ve rotasyonel cinsinden ifade ediniz. 

  S1 S2 T 

   

 















Soru 1.Başlangıçta To sıcaklığına sahip tek atomlu bir mol gazın hacmi, Vo’dan 2Vo’a; 

a) Sabit bir sıcaklıkta 

b) Sabit bir basınçta 

Çıkartılırsa, genleşme sırasında yapılan işi (W) ve gaz tarafından emilen ısıyı (Q) hesaplayınız? 

 

CEVAP: 

Sabit bir sıcaklıkta yapılan iş (W); 

𝑊 = ∫𝑝𝑑𝑉 = 𝑅𝑇𝑜 ∫
𝑑𝑣

𝑣

2𝑣𝑜

𝑉𝑜

𝐵

𝐴

= 𝑅𝑇𝑜 ln(𝑉)𝑉𝑜
2𝑉𝑜 = 𝑅𝑇𝑜𝑙𝑛2 

Sabit sıcaklıkta iç enerjide meydana gelen değişim sıfır olduğundan, gaz tarafından emilen ısı (Q), 

yapılan işe eşit olur. 

𝑄 = 𝑊 = 𝑅𝑇𝑜𝑙𝑛2 

 

Sabit bir basınç altında yapılan iş (W); 

 

𝑊 = ∫ 𝑝𝑑𝑉
2𝑣𝑜
𝑉𝑜

= 𝑝(2𝑣𝑜 − 𝑣𝑜) = 𝑝𝑣𝑜 = 𝑅𝑇𝑜      olur.  (𝑝𝑣 = 𝑛𝑅𝑇) 

 

Sabit basınçta iç enerjide meydana gelen artış; 

 

∆𝑈 = 𝐶𝑣∆𝑇 =
3

2
𝑅∆𝑇 =

3

2
𝑝𝑑𝑉 =

3

2
𝑝𝑉𝑜 =

3

2
𝑅𝑇𝑜    olarak bulunur. 

 

Sonuç olarak gaz tarafından emilen ısı; 

𝑄 = ∆𝑈 +𝑊 =
3

2
𝑅𝑇𝑜 + 𝑅𝑇𝑜 =

5

2
𝑅𝑇𝑜 

Olur. 

 

 

 

 

 

 



Soru 2.  İki boyutlu kutudaki tek parçacık için girilebilir durum sayısını bulunuz? 

 

 

 



KUANTUM MEKANİĞİ SORULARI VE CEVAPLARI

Soru: V (x) = −V0δ(x), V0 > 0 olan çekici bir delta potansiyeline bağlı bir parçacık için;
a) Negatif enerji durumunda bu parçacığın tek bir bağlı duruma sahip olduğunu göstererek

bağlanma enerjisi ve dalga fonksiyonunu bulunuz.
b) Parçacığın −a ≤ x ≤ a aralığında bulunma olasılığını bulunuz.
c) E > 0 durumunda dalga fonksiyonunu ve sınır koşullarının verdiği denklemleri yazınız.

Cevap: a) E < 0 için Schrödinger denklemi

− h̵
2

2m

d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x)

x ≠ 0 için δ(x) sıfır olduğundan

d2ψ(x)
dx2

+ 2mV0
h̵2

δ(x)ψ(x) + 2mE

h̵2
ψ(x) = 0

x ≠ 0 için δ(x) sıfır olduğundan, Schrödinger denklemi E = −∣E∣ < 0 yazarak

d2ψ(x)
dx2

− 2m∣E∣
h̵2

ψ(x) = 0

Bu denklemin genel çözümü
ψ(x) = Aekx +Be−kx

Burada k =
√
2m ∣ E ∣/h̵ dır. limx→∓∞ψ(x) ifadelerinin sonlu olma koşulunu kullanarak çözüm

ψ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ψ−(x) = Aekx, x < 0

ψ+(x) = Be−kx, x > 0

haline gelir. Bu dalga fonksiyonu x = 0 da sürekli olmalıdır, ψ−(0) = ψ+(0). Buradan A = B ve
dalga fonksiyonu ψ(x) = Ae−k∣x∣. Schrödinger denkleminin [−ϵ,+ϵ] aralığında integralini alırsak,

lim
ϵ→0

dψ+(x)
dx

∣
x=+ϵ
− lim
ϵ→0

dψ−(x)
dx

∣
x=−ϵ
+ 2mV0

h̵2
ψ(0) = 0

k = mV0
h̵2 bulunur.

k = mV0
h̵2
=
√
2m ∣ E ∣/h̵



eşitliğinden bağlı durum enerjisi E = −mV
2
0

2h̵2 bulunur. Dalga fonksiyonu normalize edilirse

∫
+∞

−∞

ψ∗(x)ψ(x)dx = A
2

k
= 1

A =
√
k bulunur. Böylece

E = −mV
2
0

2h̵2
ψ(x) =

√
mV0
h̵2

e
−

mV0
h̵2 ∣x∣

b) Parçacığın −a ≤ x ≤ a aralığında bulunma olasılığı

P = ∫
a

−a ∣ψ(x)∣2dx
∫
∞

−∞
∣ψ(x)∣2dx

= k∫
a

−a
e−2k∣x∣dx

= k∫
0

−a
e−2kxdx + k∫

a

0
e−2kxdx = 1 − e−2ka

= 1 − e−2mV0a/h̵2

c)
d2ψ(x)
dx2

+ 2mE

h̵2
ψ(x) = 0

denkleminin E > 0 için çözümü

ψ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ψ−(x) = Aeikx +BAe−ikx, x < 0

ψ+(x) = Ceikx, x > 0

Burada k =
√
2mE/h̵ x = 0 da ψ(x) in süreklilik koşulu

A +B = C

Schrödinger denkleminin [−ϵ,+ϵ] aralığında integralinde bu dalga fonksiyonunu kullanırsak

ik(C −A +B) + 2mV0
h̵2

C = 0



Soru: Bir d elektronunu (ℓ = 2, s = 1
2) düşünelim.

(a) Tüm bağlanımlı durumları ∣jmj⟩ ve bağlanımsız durumları ∣ℓmℓ⟩∣sms⟩ yazınız.
(b) Eğer elektron ∣52

3
2⟩ durumunda ise hangi mℓ değerlerine hangi olasılıklarla sahip olabilir?

(c) Eğer elektron ∣21⟩∣12
1
2⟩ durumunda ise ⟨L⃗.S⃗⟩ =?

Cevap: : (a) ℓ = 2 ve s = 1/2 ise ∣ℓ − s∣ ≤ j ≤ ℓ + s şunu verir; j = 3/2,5/2.
Çiftlenimli durumlar, ∣jmj⟩: ∣52

5
2⟩, ∣

5
2
3
2⟩, ∣

5
2
1
2⟩, ∣

5
2
−1
2 ⟩, ∣

5
2
−3
2 ⟩, ∣

5
2
−5
2 ⟩, ∣

3
2
3
2⟩, ∣

3
2
1
2⟩, ∣

3
2
−1
2 ⟩, ∣

3
2
−3
2 ⟩.

Çiftlenimsiz durumlar, ∣ℓmℓ⟩∣sms⟩: ∣22⟩∣12
1
2⟩, ∣21⟩∣

1
2
1
2⟩, ∣20⟩∣

1
2
1
2⟩, ∣22⟩∣

1
2
−1
2 ⟩, ∣21⟩∣

1
2
−1
2 ⟩, ∣20⟩∣

1
2
−1
2 ⟩,

∣2 − 1⟩∣12
1
2⟩, ∣2 − 2⟩∣

1
2
1
2⟩, ∣2 − 1⟩∣

1
2
−1
2 ⟩, ∣2 − 2⟩∣

1
2
−1
2 ⟩.

(b) ∣52
5
2⟩ çiftlenimli durumunu çiftlenimsiz durumlar cinsinden yazmamız gerekiyor. Bunu yap-

manın yolu maksimum durumdan başlayıp sonra J− = L− + S− uygulamaktır.

∣5
2

5

2
⟩ = ∣22⟩ ∣1

2

1

2
⟩

J− ∣
5

2

5

2
⟩ = (L− ∣22⟩) ∣

1

2

1

2
⟩ + ∣22⟩ (S− ∣

1

2

1

2
⟩)

∣5
2

3

2
⟩ = 1√

5
∣22⟩ ∣1

2

−1
2
⟩ + 2√

5
∣21⟩ ∣1

2

1

2
⟩

O halde

∣ 1√
5
∣
2

=%20 ihtimalle mℓ = 2

∣ 2√
5
∣
2

=%80 ihtimalle mℓ = 1

(c) Şöyle başlayalım.

⟨L⃗.S⃗⟩ = (⟨21∣ ⟨1
2

1

2
∣) (L⃗.S⃗)(∣21⟩ ∣1

2

1

2
⟩)

Burada ∣21⟩∣12
1
2⟩ durumu L2 ile S2 nin ortak özvektörüdür. O halde, L⃗.S⃗ operatörünü L2 ve S2

cinsinden yazmamız gerekiyor.

J⃗ = L⃗ + S⃗ ⇒ L⃗.S⃗ = 1

2
(J2 −L2 − S2)

Buradan şuna ulaşırız.

⟨L⃗.S⃗⟩ = 1

2
(⟨21∣ ⟨1

2

1

2
∣) [(J2 ∣21⟩ ∣1

2

1

2
⟩) − (L2 ∣21⟩) ∣1

2

1

2
⟩ − ∣21⟩ (S2 ∣1

2

1

2
⟩)]

Köşeli parantezin içindeki ilk terimi düzenlememiz gerekiyor, çünkü ∣21⟩∣12
1
2⟩ durumu J2 nin öz-

durumu değil. Yani, ∣21⟩∣12
1
2⟩ çiftlenimsiz durumunu çiftlenimli durumlar cinsinden yazmamız

gerekiyor. ∣21⟩∣12
1
2⟩ durumunda mℓ = 1 ve ms = 1/2 olduğu için kesinlikle mj = 3/2 dir. Bu

durumda bize gerekli olan çiftlenimli durumlar ∣52
3
2⟩ ve ∣32

3
2⟩ dir. Birincisi yukarıda zaten var.

İkincisini hesap edelim. Önce ∣32
3
2⟩ = a∣22⟩∣

1
2
−1
2 ⟩ + b∣21⟩∣

1
2
1
2⟩ yazarız. Burada mj = mℓ +ms şartını



sağlayan muhtemel bütün çiftlenimsiz durumların lineer toplamını düşünürüz. Sonra ⟨32
3
2 ∣

3
2
3
2⟩ = 1

normalizasyon ile ⟨52
3
2 ∣

3
2
3
2⟩ = 0 dikliğini kullanarak a ve b katsılarını hesap ederiz.

∣3
2

3

2
⟩ = 2√

5
∣22⟩ ∣1

2

−1
2
⟩ − 1√

5
∣21⟩ ∣1

2

1

2
⟩

Artık bize lazım olan şu bilgiyi hesaplayabiliriz.

∣21⟩ ∣1
2

1

2
⟩ = 2√

5
∣5
2

3

2
⟩ − 1√

5
∣3
2

3

2
⟩

Toparlayalım.

⟨L⃗.S⃗⟩ =1
2
{( 2√

5
⟨5
2

3

2
∣ − 1√

5
⟨3
2

3

2
∣)J2 ( 2√

5
∣5
2

3

2
⟩ − 1√

5
∣3
2

3

2
⟩)

−(⟨21∣ ⟨1
2

1

2
∣) [(L2 ∣21⟩) ∣1

2

1

2
⟩] − (⟨21∣ ⟨1

2

1

2
∣) [∣21⟩ (S2 ∣1

2

1

2
⟩)]}

= h̵
2

2
[(4

5
)(5

2
)(7

2
) + (1

5
)(3

2
)(5

2
) − (2) (3) − (1

2
)(3

2
)]

= h̵
2

2



SEÇMELİ DERS (DIŞ CEBİR) SORULARI VE CEVAPLARI

Soru: R3 içine gömülü H2 2-hiperbolü z2 − x2 − y2 = a2 denklemiyle tanımlanır ki burada a > 0
bir sabit. x = a sinhψ cosϕ, y = a sinhψ sinϕ ve z = a coshψ koordinat dönüşümüyle xµ = (ψ,ϕ)
koordinat haritasında H2 manifoldu ve g = dx2 + dy2 − dz2 metriği için Riemann eğrilik skalerini
hesaplayınız.

Cevap: Verilen koordinat dönüşümlerinden

dx = a coshψ cosϕdψ − a sinhψ sinϕdϕ

dy = a coshψ sinϕdψ + a sinhψ cosϕdϕ

dz = a sinhψ dψ

hesap edilir. Bu durumda verilen metrik

g = dx2 + dy2 − dz2 = a2dψ2 + a2 sinh2ψ dϕ2

olur. Buradan ortonormal 1-formlar ve tersleri şöyle yazılır:

e1 = adψ , e2 = a sinhψ dϕ ⇔ dψ = e
1

a
, dϕ = e2

a sinhψ

Levi-Civita bağlantı 1-formlarını hesap etmek için dea hesap edilmelidir.

de1 = 0 , de2 = a coshψdψ ∧ dϕ = cothψ

a
e1 ∧ e2

Bunları ωab ∧ eb = −dea denkleminde yerleştirelim.

ω1
2 ∧ e2 = −de1 = 0

ω2
1 ∧ e1 = −de2 =

cothψ

a
e2 ∧ e1

Birinci denklem hiç bilgi vermezken ikinci denklemden ω2
1 = cothψ

a e2 buluruz. Dolayısıyla

ω1
2 = −

cothψ

a
e2 = − coshψ dϕ

Şimdi, Riemann eğrilik 2-formunu Ra
b = dωab + ωac ∧ ωcb hesap edelim. 2-boyutlu Riemann ge-

ometrisinde her zaman ωac ∧ ωcb = 0 dır. O halde

R1
2 = dω1

2 = − sinhψ dψ ∧ dϕ = −
1

a2
e1 ∧ e2

Artık Ricci eğrilik 1-formunu (Ric)a = ıbRb
a bağıntısından

(Ric)1 = ı2R2
1 = −

e1

a2
, (Ric)2 = ı1R1

2 = −
e2

a2

şeklinde hesap ederiz. Son olarak eğrilik skalerini R = ıa(Ric)a tanımından elde ederiz.

R = ı1(Ric)1 + ı2(Ric)2 = −
2

a2



Soru: R3 te xµ = (x1, x2, x3) = (r, ϕ, z) ile gösterilen silindirik koordinat haritasında

g = gµνdxµ ⊗ dxν = dr ⊗ dr + r2dϕ⊗ dϕ + dz ⊗ dz

metriği yardımıyla bir f(r, ϕ, z) fonksiyonunun, A 1-fromunun ve B iki formunun dış türevini
hesaplayınız. Sonuçları gradyan, diverjans ve rotasyonel cinsinden ifade ediniz.

Cevap:

e1 = dr, e2 = rdϕ, e3 = dz

df = ∂f
∂r
dr + ∂f

∂ϕ
dϕ + ∂f

∂z
dz = ∂f

∂r
e1 + 1

r

∂f

∂ϕ
e2 + ∂f

∂z
e3

Ð→∇f = ∂f
∂r
î + 1

r

∂f

∂ϕ
ĵ + ∂f

∂z
k̂

A = Are1 +Aϕe2 +Aze3 = Ardr +Aϕrdϕ +Azdz

dA = (∂Az
∂ϕ
− r

∂Aϕ
∂z
)dϕ ∧ dz + (∂Ar

∂z
− ∂Az
∂r
)dz ∧ dr + (

∂(rAϕ)
∂r

− ∂Ar
∂ϕ
)dr ∧ dϕ

dA = (1
r

∂Az
∂ϕ
−
∂Aϕ
∂z
)e2 ∧ e3 + (∂Ar

∂z
− ∂Az
∂r
)e3 ∧ e1 + 1

r
(
∂(rAϕ)
∂r

− ∂Ar
∂ϕ
)e1 ∧ e2

Ð→∇ ×
Ð→
A = (1

r

∂Az
∂ϕ
−
∂Aϕ
∂z
)̂i + (∂Ar

∂z
− ∂Az
∂r
)ĵ + 1

r
(
∂(rAϕ)
∂r

− ∂Ar
∂ϕ
)k̂

B = Bre
23 +Bϕe

31 +Bze
12 = rBrdϕ ∧ dz +Bϕdz ∧ dr + rBzdr ∧ dϕ

dB = ∂(rBr)
∂r

+
∂Bϕ

∂ϕ
+ r∂Bz

∂z
dr ∧ dϕ ∧ dz

dB = 1

r
[∂(rBr)

∂r
+
∂Bϕ

∂ϕ
+ r∂Bz

∂z
] e1 ∧ e2 ∧ e3

Ð→∇ ⋅
Ð→
B = 1

r

∂(rBr)
∂r

+ 1

r

∂Bϕ

∂ϕ
+ ∂Bz

∂z
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