

Natural Materials

TABLE 1 General Properties of Certain Natural Polymers

	Polymer	Incidence	Physiological function
A. Proteins			
Silk		Synthesized by arthropods	Protective cocoon
Keratin		Hair	Thermal insulation
Collagen		Connective tissues (tendon, skin, etc.)	Mechanical support
Gelatin		Partly amorphous collagen	(Industrial product)
Fibrinogen		Blood	Blood clotting
Elastin		Neck ligament	Mechanical support
Actin		Muscle	Contraction, motility
Myosin		Muscle	Contraction, motility
B. Polysaccharides			
Cellulose (cotton)		Plants	Mechanical support
Amylose		Plants	Energy reservoir
Dextran		Synthesized by bacteria	Matrix for growth of organism
Chitin		Insects, crustaceans	Provides shape and form
Glycosaminoglycans		Connective tissues	Contributes to mechanical support
C. Polynucleotides			
Deoxyribonucleic acids (DNA)		Cell nucleus	Direct protein biosynthesis
Ribonucleic acids (RNA)		Cell nucleus	Direct protein biosynthesis

Natural Materials

- Natural polymers offer the advantage of being very similar, often identical, to macromolecular substances in the body.
 - 😊
 - Little/no problems with toxicity or
 - Stimulation of a chronic inflammatory reaction.
 - Ability to be degraded by natural occurring enzymes (control of lifetime of the implant by chemical modifications is possible).
 - 😢
 - Frequently quite immunogenic (especially protein-based materials).
 - Technological manipulation is much more elaborate (structurally much more complex than most synthetic polymers).
 - When derived from animal sources:
 - High inter-individual and inter-tissue (!) variation in composition and modification → stringent batch-control required

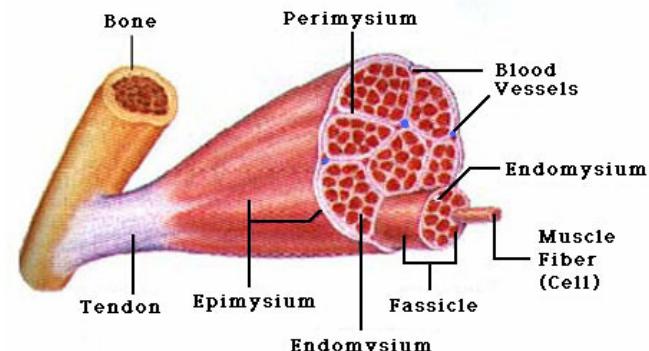
Natural Materials: Proteins

- Proteins:
 - Frequently significantly immunogenic
 - Collagen (weak immunogenic)
 - Can sometimes be prevented by identification and modification of anti-genic determinants
 - Temperatur-sensitive (processing at room temp.)
 - Natural variability in structure (animal source)
 - Species specificity
 - Tissue specificity

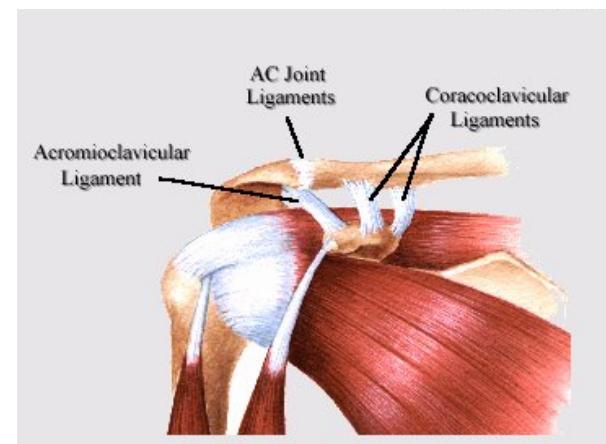
Rigid specifications are required from one batch to the next.
Stringent control methods must be used for the raw material. Quite elaborate as most of these materials are not readily water soluble...

Natural Materials: Proteins

- Most of the natural polymers used as biomaterials today are constituents of the extracellular matrix (ECM) of connective tissues such as:
 - Tendons
 - Ligaments
 - Skin
 - Blood vessels
 - Bone
- Composites of collagen and elastin fibers encasing a matrix of proteoglycans with extensive intermolecular chemical bonding; highly swollen in water.

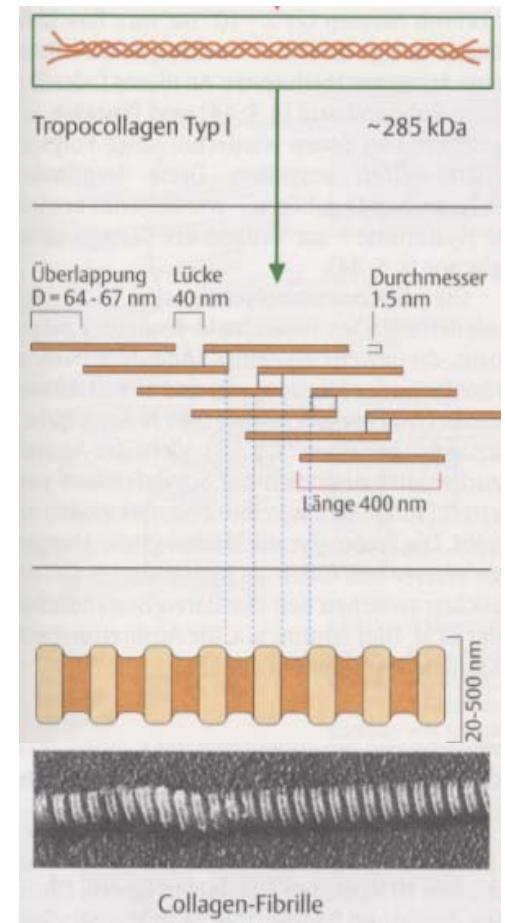

Natural Materials

- Naturally occurring composites are within us all. On the macro scale, soft and hard tissues are formed from a complex structural array of organic fibers and matrix.
- Soft tissues are formed from:
 - elastic (elastin) and
 - non-elastic fibers (collagen) with a
 - cellular matrix between the fibers.


Tissue	Tensile Strength (MPa)	Ultimate Elongation (%)
Tendon (low elastin content)	53.0	9.4
Skin (High elastin content)	7.6	78.0
Elastin	1	100
Collagen	50-100	10

Natural Materials: Soft tissues

- Biological structures such as tendon, linking muscles to bone, are low in elastin thus allowing muscle movement to be translated to the bone.

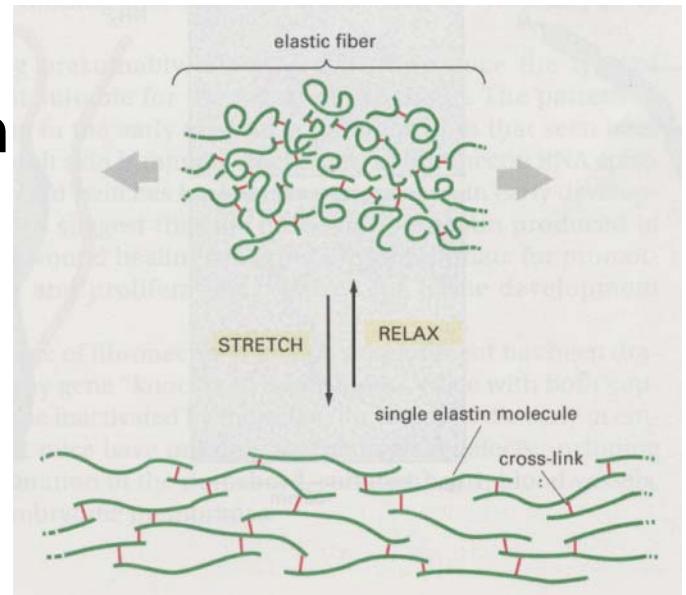

- Ligaments, linking bone to bone, are high in elastin allowing movement between bones but retaining sufficient support to stop joints dislocating.

Collagen

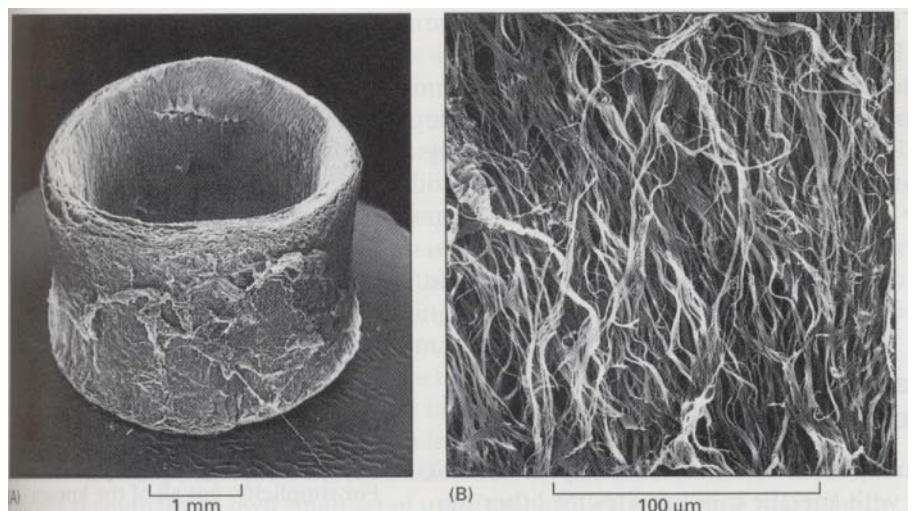
- Collagen: highly abundant and varied protein with more than 14 types discovered.

- Formed from tropocollagen molecules.
- Tropocollagen is formed from three peptide chains (1/3 Gly, 1/3 Pro and hydroxyproline and 1/3 other amino acids).
- Different collagen types are formed by variations in the sequence and amount of amino acids found in the alpha-chains.
- The three chains are principally stabilized by hydrogen bonds and some occasional covalent bonds forming a right-handed helix.

Collagen

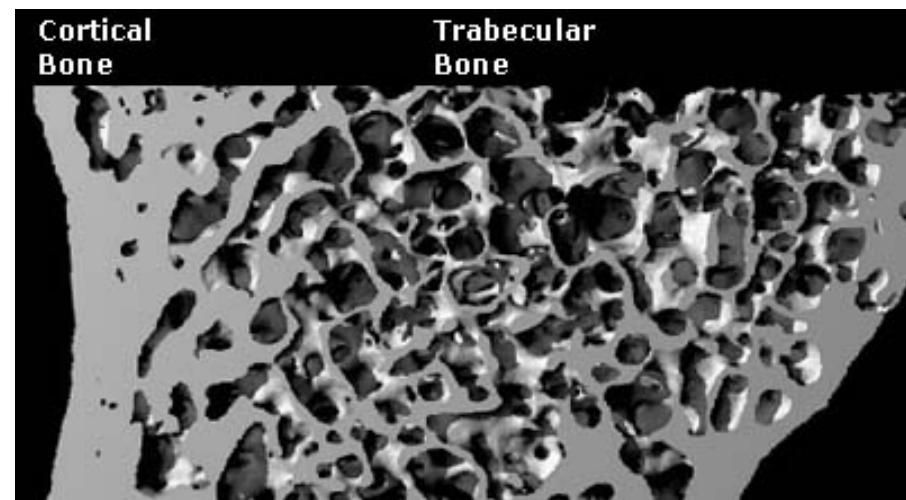

Table 19-4 Some Types of Collagen and Their Properties

	Type	Molecular Formula	Polymerized Form	Tissue Distribution
FIBRIL-FORMING (FIBRILLAR)	I	$[\alpha 1(I)]_2\alpha 2(I)$	fibril	bone, skin, tendon, ligaments, cornea, internal organs (accounts for 90% of body collagen)
	II	$[\alpha 1(II)]_3$	fibril	cartilage, intervertebral disc, notochord, vitreous humor of the eye
	III	$[\alpha 1(III)]_3$	fibril	skin, blood vessels, internal organs
	V	$[\alpha 1(V)]_2\alpha 2(V)$	fibril (with type I)	as for type I
	XI	$\alpha 1(XI)\alpha 2(XI)\alpha 3(XI)$	fibril (with type II)	as for type II
FIBRIL-ASSOCIATED	IX	$\alpha 1(IX)\alpha 2(IX)\alpha 3(IX)$ with type II fibrils	lateral association	cartilage
	XII	$[\alpha 1(XII)]_3$ with some type I fibrils	lateral association	tendon, ligaments, some other tissues
NETWORK-FORMING	IV	$[\alpha 1(IV)]_2\alpha 2(IV)$	sheetlike network	basal laminae
	VII	$[\alpha 1(VII)]_3$	anchoring fibrils	beneath stratified squamous epithelia


Note that types I, IV, V, and XI are each composed of 2 or 3 types of α chain, whereas types II, III, VII, and XII are composed of only 1 type of α chain each. Only 9 types of collagen are shown, but about 15 types of collagen and about 25 types of α chain have been defined so far.

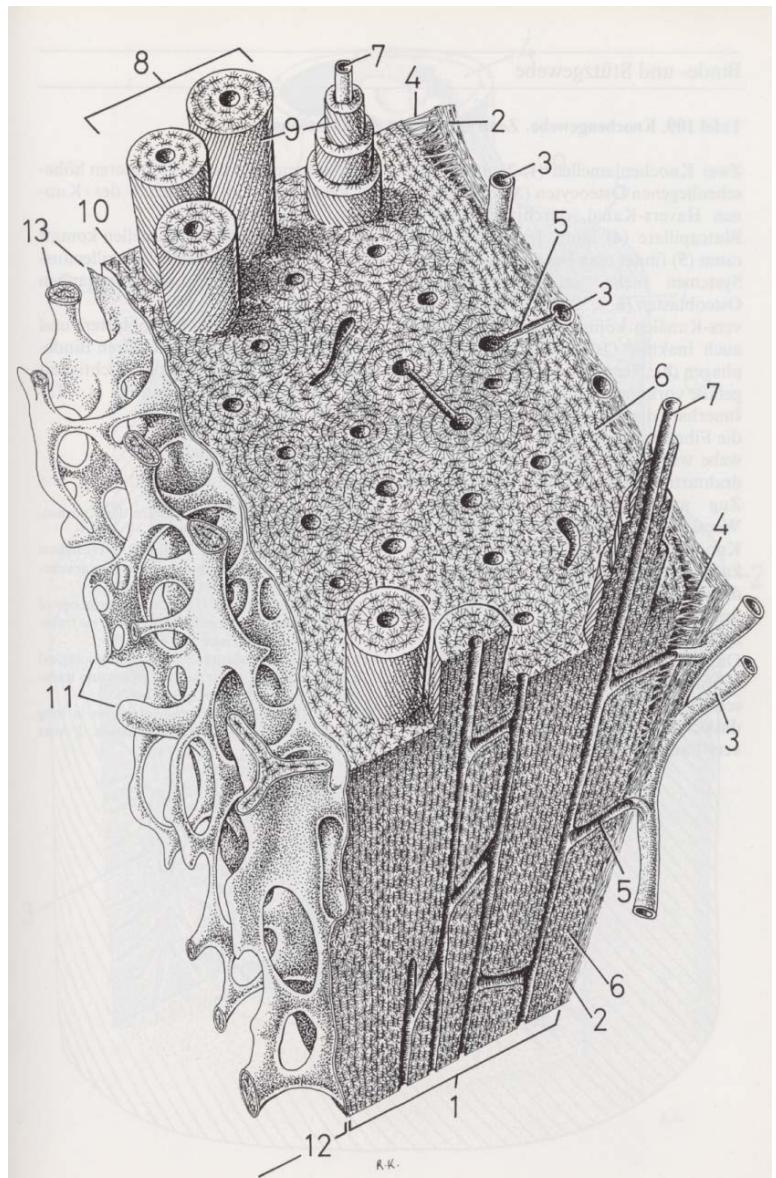
Elastin

- Elastin is formed in a similar fashion to that of collagen.
- Gly, Ala and Ser (55-70%).
- Elastin lacks collagen's repetitive sequencing at the fibril stage.
- Fibres are only 5 to 7mm in length.
- Highly hydrophobic and elastic.

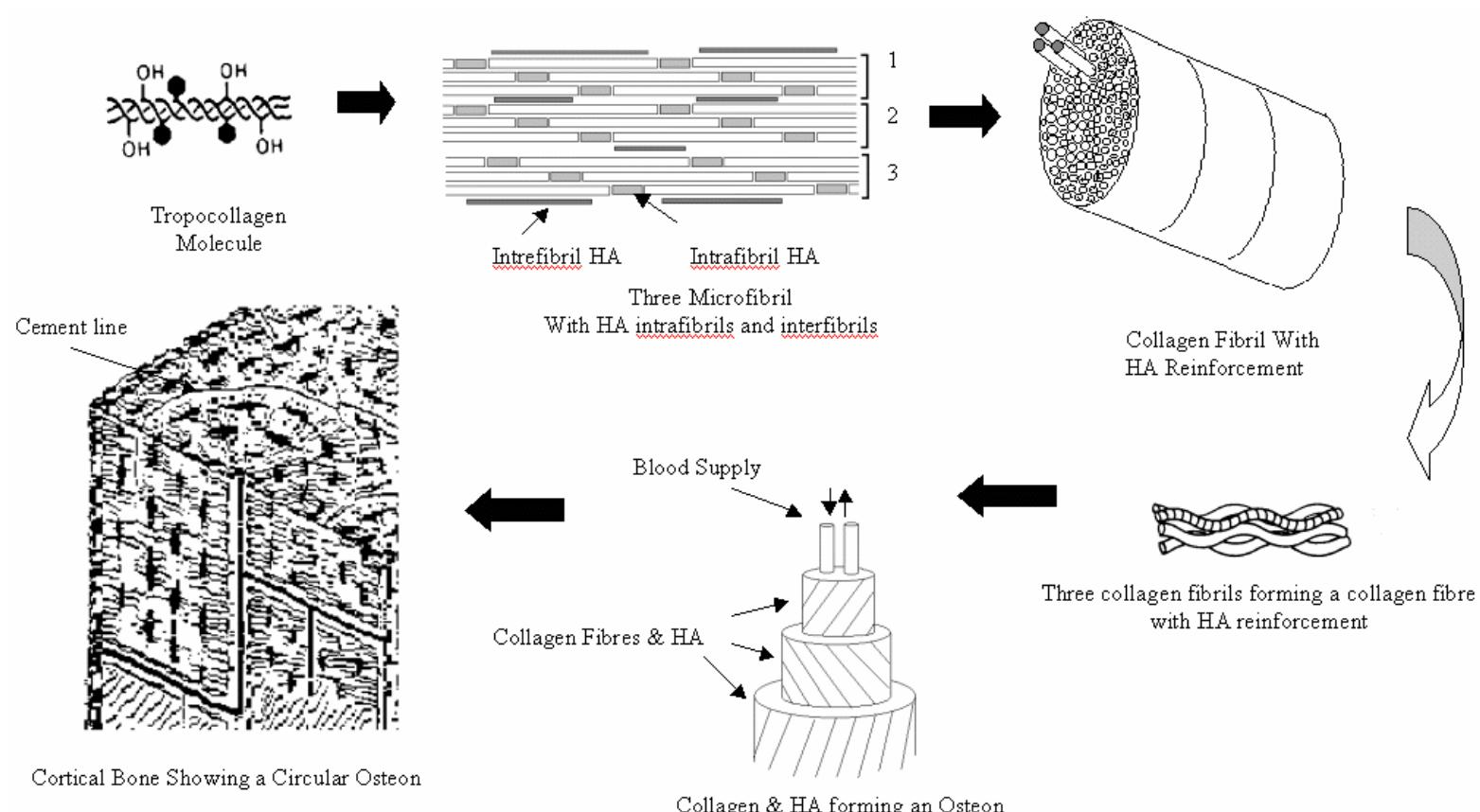

Soluble preparations not yet applied extensibly as bio-mats

Dog aorta with elastic fibers in the outer layer of the blood vesel.

Natural Materials: Hard tissues


- Bone:
 - Cortical (also called compact)
 - Trabecular (also called cancellous or spongy)

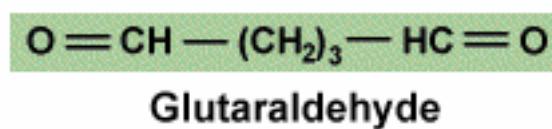
- All hard tissues are formed from the 4 basic phases. The relative fraction varies between bone type and conditions; for typical cortical bone:
 - Organic – collagen fibres (type 1) 16%
 - Mineral – Hydroxyapatite 60%
 - Ground substance 2%
 - Water 22%


Hard tissues: Bone

- Trabecular bone is a sponge like structure; approximates to an isotropic material.
- Cortical bone is highly anisotropic with reinforced structures along its loading axis and a highly organized blood supply (haversian system).

Hard tissues: Bone

- Collagen fibres provide the framework and architecture of bone, with the HA particles located between the fibres. Ground substance (proteins, polysaccharides, mucopolysaccharides act as cement, filling the space between fibres and HA mineral).



Modification of Collagen

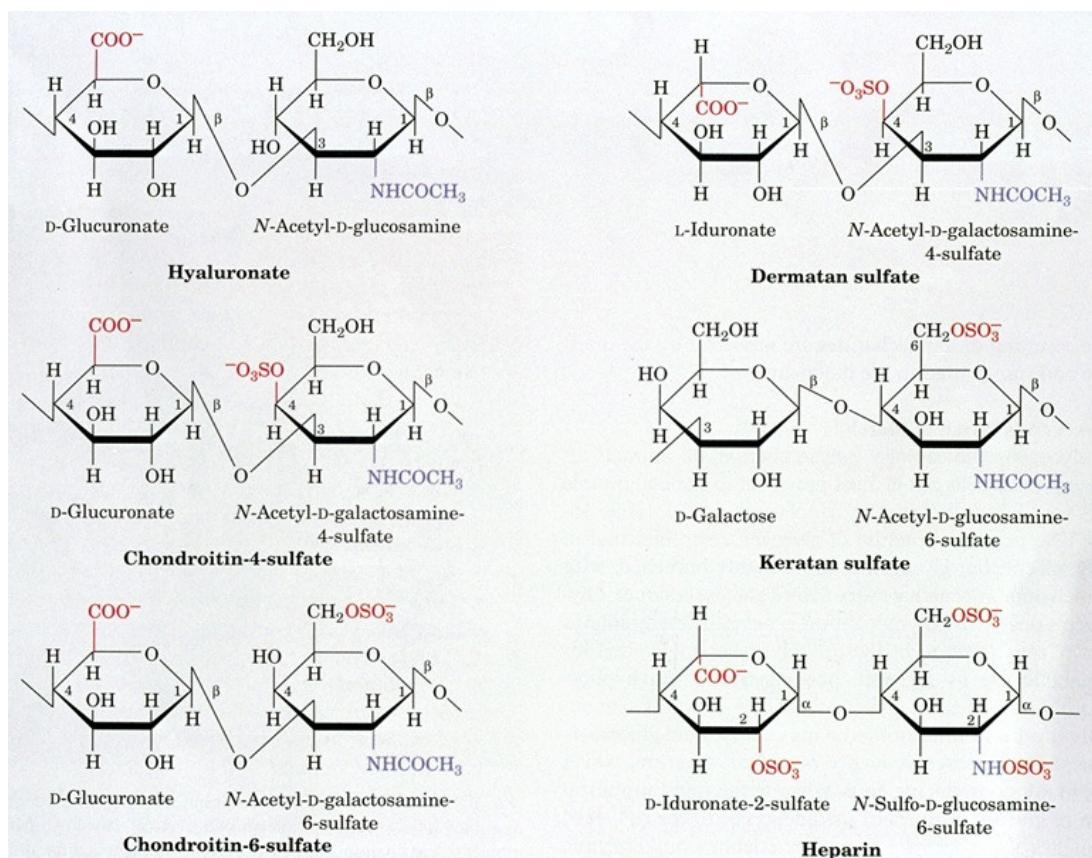
- Implanted collagen is subjected to degradative attack by collagenases.
 - Collagenases are naturally present in healing wounds.
 - Degrade collagen and ECM (extracellular matrix).
 - In parallel de novo synthesis of these components occur; are not a replica of the intact tissue: new architectural arrangements lead to scar formation.

Modification of Collagen

- Modification of collagen is used to accelerate or slow down the degradation rate to a desired level.
- Amino acid residues of collagen can be modified:
 - Carboxylated side groups (Glu, Asp)
 - Amino groups (Lys, Hydroxy-Lys, Arg)
 - Hydroxy groups (Tyr, Hydroxy-Lys)
- Chemical cross-linking is used to decelerate the degradation rate:
 - Dialdehydes (e.g. Glutaraldehyde) is cross-linking ϵ -amino groups of Lys.

Collagen-based biomaterials

- Clinical significance of collagen immunogenicity:
has been shown to be very low: Only small species differences (e.g. cow vs. human)
- Blood clotting effect:
Fully folded (quaternary helix structure) collagen binds blood-platelets (hemostatic property)
partially unfolded collagen (can be achieved by thermo/chemical modifications) is without effect on blood clotting.


TABLE 2 Certain Applications of Collagen-Based Biomaterials

Application	Physical state
Sutures	Extruded tape (Schmitt, 1985)
Hemostatic agents	Powder, sponge, fleece (Stengel <i>et al.</i> , 1974; Chvapil, 1979)
Blood vessels	Extruded collagen tube, processed human or animal blood vessel (Nimni, 1988)
Heart valves	Processed porcine heart valve (Nimni, 1988)
Tendon, ligaments	Processed tendon (Piez, 1985)
Burn treatment (dermal regeneration)	Porous collagen-glycosaminoglycan (GAG) polymer ^a (Yannas <i>et al.</i> , 1981, 1982, and 1989)
Peripheral nerve regeneration	Porous collagen-GAG copolymer (Chang and Yannas, 1992)
Meniscus regeneration	Porous collagen-GAG copolymers (Stone <i>et al.</i> , 1989)
Intradermal augmentation	Injectable suspension of collagen particles (Piez, 1985)
Gynecological applications	Sponges (Chvapil, 1979)
Drug-delivery systems	Various forms (Stenzel <i>et al.</i> , 1974, Chvapil, 1979)

Glycosaminoglycans (GAG)

- Linear polysaccharides bound to proteins; form the ground substance in the extracellular space of connective tissue, cartilage, tendon and blood vessel walls.

The entire branched macro-molecule is called a proteo-glycan (protein with GAG sidechains)

Copolymers of collagen and glycosaminoglycans

- Analogs of ECM have been synthesized and have been studied as implants in a **Template function**.
 - Type I collagen – chondroitin sulfate copolymers for healing of full thickness skin wounds (powder and films):
 - Strongly reduced scar formation.
 - Formation of an almost physiological dermis.
 - Inducing peripheral nerve regeneration
 - Regeneration of knee meniscus (dog, horse)