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Deniz Alis Erdem Yaman

CEO Solution Architect
A iate Prof r . : :
ol ines Electric an® efMputer Engineg Computer Engineer
of Radiology ; . 1
\gfronic Erzjeer A x}
: i : +§ yegr mpuief vision experience Ex Siemens
Cerrahpasa & Acibadem University Ex Turkcell Ing Vo n£ N ‘l&%ﬂ’r o€rtise in DL for Medical  +12 years software development

+10 Years Healthcare Experience +10 years software dexglopment il LT

+70 Peer-Reviewed Publications experience : iy P

Google Developer
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AHMET KARAGOZ

| SAID KARTAL
Machine Learning Machine Learning Machine Learning
Engineer Engineer Engineer

AYHAN YUKSEK

BEYZA ERBAS

EDA AYDIN

Machine Learning IT Specialist
Engineer

ENES POLAT

Sales&Marketing Software Engineer
Manager
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likay Oksuz

Associate Professor of
Computer Engineering
Istanbul Technical University

M. Hakki Karakas

Director of Medical
Imaging
Services of Istanbul Province
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Son yillarda bilgisayarli tomosafi | ; oyabilme acisindan
vazgecilmez bir goruntdleme teknotejisi i ' 2 kabul edilmekle birlikte

BT k aktadir.



United States
Japan
Luxembourg
Belgium
France

l¢eland
Greece

Korea®

Turkey

Latvia
Portugal'
Denmark
Slovak Republic
Canada
Estonia
Germany
0ECD29
Austria

Israel
Australia?
Hungary

Spain

Czech Republic
Switzerlang!
Poland

Chile
Netherlands?
United Kingdom?®
Slovenia
Fintand

Turkiyes

Per 1000 popu1

992

Spain

Hungary
Portugal®
Israel
Korea®
Poland
Chile

MR

100

gekip Sayilar

125
Per 1 000 population

150
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Asiri cekim
mevcut!

* Dinyada yapilan afas larda %7-60
arasi gereksiz ¢cekim
vakalar

* Yakin gelecekte ti %e
%2si tanisal goru Ulﬁe' zUnde

olacak!

Radon & thoron
(background) (37%)

: ' | O Industrial (<0.1%)
igte Occupational (<0.1%)

medical) (13
( £ Intervghtional Consumer (2%)

fluoghscopy Conventional radiology/fluoroscopy
(meghical) (7%) (medical) (5%)




Right Right 'z Right
Request - Acquisition ~ €@ Document:
0 Access to prior exam i i i Compliance to std.
* National teleradiology i * Centrally manage .
system ia. tracked ; aalm var:
ilaiyli Availability of DRLs :
Appropriateness i '} : 1 * National and/or regional

* Electronic clinical decision i Pan-European
support system to request

orders according to U yg un | u k
appropriate utilization n _
criteria * Pediatrig vs A . . epe e

- Matchelto paameeite . educatio Erisilebilirlik




y gmada yanlis cekimin yatis
Uzattigl ortaya k@nulmus - gercek hastalik

DEW.z-rmx::tahkl n tedavi edildigi ve maddi kayip
ugo [







skilmemesi
gerekli




* Hastanin radyasyondz
temel prensip var:
o Gerekcelendirme (Uyg
o Optimizasyon (incele

e Karar destek sistemi Am
faydali bulunmus.




olarak anlatip yanl
vermemek gerekli



bulunmakta.
 Cozum: Egitim
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Yikicl
Teknoloj

Mevcut pazarlari vefis .

sekillerini temelden
degistirebilecek yenili
teknolojiler...
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Yapay zekanin iki
oldugu sdylenebilir:

e Zekanin n
anlasilabil
surecinin a



Artificial Intelligence
/ XS IV A\

Rule-based Reasoning
Amazon purch

Machine Learning
»

Deep Learning "I l I
¢ cial reco

a gnifion
Nalural Language Proce -'.sing ., i - I .
Data Science

Scientific methods, algorithms
and systems to extract

Speech to Text T knowledge or insights from
® big data
Speech

Trarlslatiﬂn Mach.i‘ne Vision

Text to Speech
L ]

Robotics
.

Autonomous

Veh K cles 1980's 2010's
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ETiK: AI'NIN ADIL, AYRIMCILIK
iN TUTARLI, YAPMAYAN VE ETiK KURALLARA
Jf/E GUVENILIR UYGUN SEKILDE TASARLANMASI
LAR URETMESI VE KULLANILMASI



Kaynak Yonetimi
Optimizasyonu

Esnekligi

Performans ve Veri

Maliyet Etkinligi




Problem

Traditional Medical Image Reading

Shortage

Up to 97% of the medigb
Imaging departments
meet the reading de

Patients can wait up o 1<

hours for inifial scan r&suli; ED

Error-Prone

40 Million Reported Diagnc
Errors Annually

Solution

Decp Learning-Enhanced Medical Image Reading

Capacity

ge’ iNg Boosts the
i))ilR pdiologists




hStroke

Al-Powered Triaging For
the Most Critical
Medical Emergency

hProstate

Al-Powered
MRI Reading for the Most
Common Cancer In Men

hBreastMMG

Al-Powered
Mammography Reading
for the Most Common
Cancer In Women

hChestXR

Al-Powered Reading For
the Most Frequently
Used Diagnostic
Modality



HEVI Al Platform: Mcre to come.
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hProstate

hChestXR
hChesiCT




hSiroke / e

Johnny Moody 5

Al-based Smart Emergency riaging

Employs deep leaming for rapid ccurate
neuroimaging aiuagnostics.

ldentifies brcin hernorrhage 1usion, anc
iIschemic stroke.

Seamless PACS integration f dllaboraiion
and result review




www.nature.com/scientificrepor

scientific repor

ot

mechanism for detecting
intracranial hemorrhage

Yeseren Deniz Senli®, Ahmet Ustundag®, Vefa Salt®, Sebah
Hakan Hatem Selcuk’, Batuhan Kara®, Caner Ozer™, llkay
Ercan Karaarslan®

To investigate the performance of a joint convolutional neural
(CNN-RNN) using an attention mechanism in identifying and ¢l
(ICH) on a large multi-center dataset; to test its performance i
consisting of consecutive real-world patients. All consecutive g
non-contrast-enhanced head CT in five different centers were
neuroradiologists created the ground-truth labels. The develo
training and validation set. After the development phase, we i

angioaraphy

scientific repo

OPEN Automated

295% Sensitivity in
cclecting large vessel
occlusion on brain CT

omj/scientificrepor!

www.nature.com/scientificreport’

W, Choon for updates

“EN - Inter-vendor performance

of deep learning in segmenting

acute ischemic lesions

on diffusion-weighted imaging:
multicenter study

Alis™ ', Mert Yergin®, Ceren Alis’, Cagdas Topel*, Ozan Asmakutiu*, Omer Bagcilar®,
Deniz Senli®, Ahmet Ustundag®, Vefa Salt®, Sebahat Nacar Dogan’, Murat Velioglu®,
Hatem Selcuk’, Batuhan Kara®, llkay Oksuz™, Osman Kizilkilic® & Ercan Karaarslan’

There fiiittie evidence on the applicability of deep learning (DL) in the segmentation of acute ischemic
diffusion-weighted imaging (DW1) between magnetic resonance imaging (MRI) scanners
manufacturers. We retrospectively included DWI data of patients with acute ischemic
six centers. Dataset A (n=2986) and B (n=3951) included data from Siemens and GE MRI
pectively. The datasets were split into the training (80%), validation (10%), and internal
sets, and six neuroradiologists created ground-truth masks. Models A and B were the
| networks trained on datasets A and B. The models subsequently fine-tuned across
ts using their validation data. Another radiologist performed the segmentation on the test
parisons. The rmdmn Dice scores of models A and B were 0.858 and 0.857 for the internal

an independent center’s PACS environment for over six mont!
clinical setting. Three radiologists created the ground-truth lab
wvoting. A total of 55,179 head CT scans of 48,070 patients, 28,
53.84 21764 years (range 18-89) were enrolled in the study.
- = - lesions on DWI might be enhanced via t
kzabiity could be improved.

wodalities, such as computed tomogra-

T) and magnetic resonance imaging (MRI)'. Gjven that CT is wi available and has a shorter acquisition

fa Ege Seker*, Mert Yergin®, it is now recommended 1o use CT over MRI dlie to the importance of initiating treatment early’. Never-

okhan Polat’, Ahmet Tugrul Akkus’, t . MRI s valushle inform challenging cases and better delineation of ischemic }n:um in the

y rates'% ICH might occur spon- tem Selcuk”, ikay Oksuz™ h he disease due to its unsurpassed corfrast resolution . Furthermore, the volume of the ischemic
ontrast head CT is the method ¥ . Fusion-weighted imaging (QJWT) provides essential insights for decision-making. DW1
fs beacficial by A.h:-.ng‘ evaluation of the vascularferritory of the stroke lesions, predicting whether a patient

rupid and accurate diagnosis is crigiial as lht »hnuu dcxc-mral 2
roke will be benefited from the treatment night serve as a potential non-invasive biomark .

o ICH onset. Furthermore, there isa
rhage (IPH), intra-ventricul ]

i :
. as the type of ICH closely coliateral scoring on computed t

a state-of-the-art seif-configuring ;
o ipproach. The
s performance
d-truth labels for
5. The nnDetection
dentifying LVO, correctly
llateral scores had

2990/0 SenSitiVity in mm"ﬁwf—( guring nnbnmlonn::d:u::a :td:l.::gol::!{:'lm::::;r
detecting brain bleeding

CTA scans and provide semi-quantitative collateral scores, o a comprehensive approach
mated stroke diagnostics in patieffils with LVO.
on head CT Mool e R
- e ardCaused by LVO

as several larg Studies in

Non-inferior to

radiologists in

segmenting ischemic
lesions on DWI

s of mechanical thrombectony hances of achieving
mputed tomography i ‘A) has become the
o siroke Fg.a8 2 dssessing L\O It also provid tion about collateral status, which
IfC severe consequences of delayed diagnosis
of l\O and the inter-0d nong radiologists in assessing collateral status in ischemic stroke
paticnts necessitates sutomated \_J):\(ms



hProstate

Al-Powered Pro:ziate .

I Y ' = N - -
MRI Reading Experience g == ==
Advanced Al for strearnlined prostate MR
interpretations. o 4

G

Automates measurements, calculations,
and cancer detection.

"
Reduces workload and improves prosiate w
cancer management. Deplcyment in late 2023.




ARTIFICIAL INTELLIGENCE & RAP'CLOGISTS
AT PROSTATE CANCER DETLCTIONIN MR

ot é umee  NTNU
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Radboudumc

<Al
‘\'/(‘ ;:’S** ,‘"ﬂ aWS‘7 ANNQBQS ;E.:L:Ef;, 5th § joeranbosma
L % =
MID

S gfeviAl (A Karagoz, et al.; Jlirkey) algorithm trained on PI-CAl: Private and 31 March 0.754
2023

k;& : M|ccl\l Public Training Dataset



hChestXR

Al-Based
Chest X-Ray Reaciing

Rapid and accurate chest X-ray
interpretation using Al.

ldentifies 10 most cormmon patholc
significantly reducing radiolc
workload.

Seamless PACS integration  ensures W

efficient access and updates. Set for
release in Q1 2024.




hBreastMM G

Al-Based o
' ~ ! / A o evialy _ s s 5 - N Tmmme—— :s -
Mammograpihy R=oding Shmiaits® 5 €22, 2
=3 A
BI-RADS 5
Cutting-edge Al technology for efficient s
interpretations of mommography & w

Images.

Automates measurernents, calculatiol
density scoring, and cancer detectior

Significantly reduces workload and
enhances breast cancer managemeint.
Expected deployment in late 2024.




Sales Models




Traction

We Move Forward Conirident!y

~

AMERIKA N ERSITESI ISTANBUL iL SASLIK MUDURLUGD
HASTANb = I ISTANBUL EGiTiM ARASTIRMA HASTANESI
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Let me Take You Through 2023-2025

Product-Specific Expansion

O hSiroke & hChestXR: Expansion into the curopean Emergency Neiwcrk is in talks with Cem Calli of
European Society of Emergency Radiology.

O hStroke: Plans to expcnd inin tne: Balkans and The Network. Fartnershin discussions are
ongoing with Serdar (Geyik ot {CURE.

O hBreastMMG: Projected exnans on throug i GE Healthcai= targeted for Q1 2025. Point
of contact is Erkin Aribal.

O hScoliosis: Targeting an expansion irto the VCH A region and Asia by Q2 2025. Discussions underway with
Azmi Homzaoglu and Aerorad

O hProstate: Targeting an expansicn into Europ=, MENA, and ihe 'Jnited Staires. Plan to use Hacettepe and

Baris Turkey (lead radiologist in Prostate imaging)
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Tech Giants

Hospital Chains
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